2,132 research outputs found
Circadian regulation of lipid mobilization in white adipose tissues.
In mammals, a network of circadian clocks regulates 24-h rhythms of behavior and physiology. Circadian disruption promotes obesity and the development of obesity-associated disorders, but it remains unclear to which extent peripheral tissue clocks contribute to this effect. To reveal the impact of the circadian timing system on lipid metabolism, blood and adipose tissue samples from wild-type, Clock Delta 19, and Bmall(-/-) circadian mutant mice were subjected to biochemical assays and gene expression profiling. We show diurnal variations in lipolysis rates and release of free fatty acids (FFAs) and glycerol into the blood correlating with rhythmic regulation of two genes encoding the lipolysis pacemaker enzymes, adipose triglyceride (TG) lipase and hormone-sensitive lipase, by self-sustained adipocyte clocks. Circadian clock mutant mice show low and nonrhythmic FFA and glycerol blood content together with decreased lipolysis rates and increased sensitivity to fasting. Instead circadian clock disruption promotes the accumulation of TGs in white adipose tissue (WAT), leading to increased adiposity and adipocyte hypertrophy. In summary, circadian modulation of lipolysis rates regulates the availability of lipid-derived energy during the day, suggesting a role for WAT clocks in the regulation of energy homeostasis
Tecnologias em desenvolvimento para o manejo de doenças em pós-colheita de maçãs.
A pós-colheita é uma importante etapa na cadeia produtiva de frutas tanto de clima tropical como temperado. As perdas ocasionadas por doenças nesta fase resultam em grandes prejuízos econômicos. As maiores perdas de maçãs armazenadas no Brasil são devido às podridões conhecidas como mofo azul causada por Penicil/ium expansum e a podridão olho de boi associada recentemente à infecção por Neofabraea brasiliensis e N. actinideae (Valdebenito- Sanhueza et al, 2010).bitstream/item/222654/1/Oster-Agapomi-n321-p6-7-2021.pd
Spatial and spatio-temporal patterns in a cell-haptotaxis model
We investigate a cell-haptotaxis model for the generation of spatial and spatio-temporal patterns in one dimension. We analyse the steady state problem for specific boundary conditions and show the existence of spatially hetero-geneous steady states. A linear analysis shows that stability is lost through a Hopf bifurcation. We carry out a nonlinear multi-time scale perturbation procedure to study the evolution of the resulting spatio-temporal patterns. We also analyse the model in a parameter domain wherein it exhibits a singular dispersion relation
Flexible generation of correlated photon pairs in different frequency ranges
The feasibility to generate correlated photon pairs at variable frequencies
is investigated. For this purpose, we consider the interaction of an
off-resonant laser field with a two-level system possessing broken inversion
symmetry. We show that the system generates non-classical photon pairs
exhibiting strong intensity-intensity correlations. The intensity of the
applied laser tunes the degree of correlation while the detuning controls the
frequency of one of the photons which can be in the THz-domain. Furthermore, we
observe the violation of a Cauchy-Schwarz inequality characterizing these
photons.Comment: 5 pages, 4 figure
I RAPPORTI ECONOMICO-FINANZIARI TRA ITALIA E REPUBBLICA DI SAN MARINO
Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light-dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms can uncouple peripheral clocks from the SCN, resulting in internal desynchrony, which promotes obesity and metabolic disorders. Pancreas-derived hormones such as insulin and glucagon have been implicated in signaling mealtime to peripheral clocks. In this study, we identify a novel, more direct pathway of food-driven liver clock resetting involving oxyntomodulin (OXM). In mice, food intake stimulates OXM secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. Inhibition of OXM signaling blocks food-mediated resetting of hepatocyte clocks. These data reveal a direct link between gastric filling with food and circadian rhythm phasing in metabolic tissues
- …