16 research outputs found

    Structure and reactivity of the cysteine methyl ester radical cation

    No full text
    The structure and reactivity of the cysteine methyl ester radical cation, CysOMe.+, have been examined in the gas phase using a combination of experiment and density functional theory (DFT) calculations. CysOMe.+ undergoes rapid ion-molecule reactions with dimethyl disulfide, allyl bromide, and allyl iodide, but is unreactive towards allyl chloride. These reactions proceed by radical atom or group transfer and are consistent with CysOMe.+ possessing structure 1, in which the radical site is located on the sulfur atom and the amino group is protonated. This contrasts with DFT calculations that predict a captodative structure 2, in which the radical site is positioned on the α carbon and the carbonyl group is protonated, and that is more stable than 1 by 13.0 kJ mol−1. To resolve this apparent discrepancy the gas-phase IR spectrum of CysOMe.+ was experimentally determined and compared with the theoretically predicted IR spectra of a range of isomers. An excellent match was obtained for 1. DFT calculations highlight that although 1 is thermodynamically less stable than 2, it is kinetically stable with respect to rearrangement

    Structure and Reactivity of the Cysteine Methyl Ester Radical Cation

    No full text
    The structure and reactivity of the cysteine methyl ester radical cation, CysOMe(center dot+), have been examined in the gas phase using a combination of experiment and density functional theory (DFT) calculations. CysOMe(center dot+) undergoes rapid ion molecule reactions with dimethyl disulfide, ally! bromide, and allyl iodide, but is unreactive towards allyl chloride. These reactions proceed by radical atom or group transfer and are consistent with CysOMe(center dot+) possessing structure 1, in which the radical site is located on the sulfur atom and the amino group is protonated. This contrasts with DFT calculations that predict a captodative structure 2, in which the radical site is positioned on the a carbon and the carbonyl group is protonated, and that is more stable than 1 by 13.0 kJ mol(-1). To resolve this apparent discrepancy the gas-phase IR spectrum of CysOMe(center dot+) was experimentally determined and compared with the theoretically predicted IR spectra of a range of isomers. An excellent match was obtained for 1. DFT calculations highlight that although 1 is thermodynamically less stable than 2, it is kinetically stable with respect to rearrangement

    Structure and Reactivity of the Distonic and Aromatic Radical Cations of Tryptophan

    No full text
    In this work, we regiospecifically generate and compare the gas-phase properties of two isomeric forms of tryptophan radical cations-a distonic indolyl N-radical (H3N+ - TrpN(center dot)) and a canonical aromatic pi (Trp(center dot+)) radical cation. The distonic radical cation was generated by nitrosylating the indole nitrogen of tryptophan in solution followed by collision-induced dissociation (CID) of the resulting protonated N-nitroso tryptophan. The p-radical cation was produced via CID of the ternary [Cu-II(terpy)(Trp)](center dot 2+) complex. CID spectra of the two isomeric species were found to be very different, suggesting no interconversion between the isomers. In gas-phase ion-molecule reactions, the distonic radical cation was unreactive towards n-propylsulfide, whereas the pi radical cation reacted by hydrogen atom abstraction. DFT calculations revealed that the distonic indolyl radical cation is about 82 kJ/mol higher in energy than the pi radical cation of tryptophan. The low reactivity of the distonic nitrogen radical cation was explained by spin delocalization of the radical over the aromatic ring and the remote, localized charge (at the amino nitrogen). The lack of interconversion between the isomers under both trapping and CID conditions was explained by the high rearrangement barrier of ca. 137 kJ/mol. Finally, the two isomers were characterized by infrared multiple-photon dissociation (IRMPD) spectroscopy in the similar to 1000-1800 cm(-1) region. It was found that some of the main experimental IR features overlap between the two species, making their distinction by IRMPD spectroscopy in this region problematic. In addition, DFT theoretical calculations showed that the IR spectra are strongly conformation-dependent
    corecore