38 research outputs found

    Bile Acid-Induced Virulence Gene Expression of Vibrio parahaemolyticus Reveals a Novel Therapeutic Potential for Bile Acid Sequestrants

    Get PDF
    Vibrio parahaemolyticus, a bacterial pathogen, causes human gastroenteritis. A type III secretion system (T3SS2) encoded in pathogenicity island (Vp-PAI) is the main contributor to enterotoxicity and expression of Vp-PAI encoded genes is regulated by two transcriptional regulators, VtrA and VtrB. However, a host-derived inducer for the Vp-PAI genes has not been identified. Here, we demonstrate that bile induces production of T3SS2-related proteins under osmotic conditions equivalent to those in the intestinal lumen. We also show that bile induces vtrA-mediated vtrB transcription. Transcriptome analysis of bile-responsive genes revealed that bile strongly induces expression of Vp-PAI genes in a vtrA-dependent manner. The inducing activity of bile was diminished by treatment with bile acid sequestrant cholestyramine. Finally, we demonstrate an in vivo protective effect of cholestyramine on enterotoxicity and show that similar protection is observed in infection with a different type of V. parahaemolyticus or with non-O1/non-O139 V. cholerae strains of vibrios carrying the same kind of T3SS. In summary, these results provide an insight into how bacteria, through the ingenious action of Vp-PAI genes, can take advantage of an otherwise hostile host environment. The results also reveal a new therapeutic potential for widely used bile acid sequestrants in enteric bacterial infections

    Design of a Middle Scale Wave Energy Convertor of a PW-OWC type for a Sea Test in Sakata Port

    Get PDF
    This study proposes a wave energy convertion (WEC) of an air turbine type with an oscillating water column (OWC) equipped with projecting walls (PW), which is called a PW-OWC type wave energy convertor in the study. OWC type WECs have been major and studied in Japan over 30 years. Because an electrical generation device is installed out of water but in air, maintenance would be easier than submerged type one and such like devices would be able to be installed on isting breakwaters and wave dissipating caissons. Thus cost of electrical generation might be saved. This study remodeled a ave dissipating double-caisson to a WEC of the PW-OWC type and conducted an ocean-wave-resistant design in order tocarry out a sea test of performances of power take-off (PTO), durability etc. Before that, basic performance of PTO was predicted from numerical model as well as well hydraulic experiments in a wave tank. This paper shows the feature of PTO of the model device using results of as the experiments conducted at the wave tank and b) the field monit0rinng of a prototype model on existing seawalls which are located in the Sakata port facing to the Sea of Japan. Observed data are presented on turbine torque and generated electricity as well as incident waves.The paper shows an intern report of the sea test.26?28 August 2015, Glasgow, U

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Identification of HLA-A24-Restricted Novel T Cell Epitope Peptides Derived from P-Cadherin and Kinesin Family Member 20A

    Get PDF
    We here identified human leukocyte antigen-(HLA-)A∗2402-restricted epitope peptides from Cadherin 3, type 1, P-cadherin (CDH3) and kinesin family member 20A (KIF20A) that were found to be specifically expressed in cancer cells through genome-wide expression profile analysis. CDH3-10-807 peptide and KIF20A-10-66 peptide successfully induced specific CTL clones, and these selectively responded to COS7 cells expressing both HLA-A∗2402 and respective protein while did not respond to parental cells or COS7 cells expressing either HLA-A∗2402 or respective protein. Furthermore, CTL clones responded to cancer cells that endogenously express HLA-A∗2402 and respective protein, suggesting that CDH3-10-807 peptide and KIF20A-10-66 peptide are naturally presented on HLA-A∗2402 molecule of human cancer cells. Our results demonstrated that CDH3-10-807 peptide and KIF20A-10-66 peptide are novel HLA-A24-restricted tumor-associated antigens and would be applicable for CTL-inducing cancer therapies

    Possible association between dysfunction of vitamin D binding protein (GC Globulin) and migraine attacks.

    No full text
    To identify the genetic causality of migraine and acute, severe melalgia, we performed a linkage analysis and exome sequencing in a family with four affected individuals. We identified a variant (R21L) in exon 2 of the GC globulin gene, which is involved in the transportation of vitamin D metabolites and acts as a chemotaxic factor; this variant was co-segregated within the family. To investigate the relationship between GC globulin and melalgia, we investigated the cytokine levels in serum samples from the patients and control subjects using a cytokine antibody array. GC globulin can bind to both MCP-1 and RANTES in human serum but has a higher affinity to MCP-1. In cell culture systems, MCP-1 was able to bind to overexpressed wild-type GC globulin but not to the GC globulin variant, and the GC globulin binding affinity to MCP-1 was significantly lower in sera from the patients than in sera from control subjects. A higher concentration of MCP-1 was also observed in sera from the patients. Thus, the dysfunctional GC globulin affected cytokine release, especially the release of MCP-1, and MCP-1 might play important roles in melalgia and migraine

    Identification of an HLA-A2-restricted epitope peptide derived from hypoxia-inducible protein 2 (HIG2).

    Get PDF
    We herein report the identification of an HLA-A2 supertype-restricted epitope peptide derived from hypoxia-inducible protein 2 (HIG2), which is known to be a diagnostic marker and a potential therapeutic target for renal cell carcinoma. Among several candidate peptides predicted by the HLA-binding prediction algorithm, HIG2-9-4 peptide (VLNLYLLGV) was able to effectively induce peptide-specific cytotoxic T lymphocytes (CTLs). The established HIG2-9-4 peptide-specific CTL clone produced interferon-γ (IFN-γ) in response to HIG2-9-4 peptide-pulsed HLA-A*02:01-positive cells, as well as to cells in which HLA-A*02:01 and HIG2 were exogenously introduced. Moreover, the HIG2-9-4 peptide-specific CTL clone exerted cytotoxic activity against HIG2-expressing HLA-A*02:01-positive renal cancer cells, thus suggesting that the HIG2-9-4 peptide is naturally presented on HLA-A*02:01 of HIG-2-expressing cancer cells and is recognized by CTLs. Furthermore, we found that the HIG2-9-4 peptide could also induce CTLs under HLA-A*02:06 restriction. Taken together, these findings indicate that the HIG2-9-4 peptide is a novel HLA-A2 supertype-restricted epitope peptide that could be useful for peptide-based immunotherapy against cancer cells with HIG2 expression
    corecore