12 research outputs found

    Multi-perspective evaluation of integrated active cooling systems using fuzzy decision making model

    Get PDF
    As global median temperatures continue to rise, the demand for active cooling systems (ACs) is increasing. These systems are particularly prevalent in developed countries for maintaining comfort during hot weather. Various ACs technologies are available, and assessing their performance in multi-perspective settings is necessary to determine the best option for intended usage. This requires an evaluation platform for assessment. This paper presents a novel multi-criteria decision-making (MCDM) model based on a new integrated 2-tuple linguistic Pythagorean fuzzy-weighted zero-inconsistency (2 TLP-FWZIC) and modified 2-tuple linguistic Pythagorean fuzzy multi-attributive border approximation area comparison (2TLPF-MABAC). The former is used to determine the importance of assessment criteria, while the latter is employed for selecting the optimal ACs using the obtained weights. The first-level weighting results reveal that performance criteria were predominantly favored for assessment, with ‘energy performance’ acquiring the most significant weight (0.2487) among all performance criteria. In terms of ACs selection results, among the 20 tested and assessed systems, the ‘geothermal borehole electricity-based ACs’ obtained the highest score value (0.1296), while the ‘window packaged electricity-based ACs’ had the lowest score (-0.0515). The robustness of the results was confirmed through sensitivity analysis

    Based on T-spherical fuzzy environment: A combination of FWZIC and FDOSM for prioritising COVID-19 vaccine dose recipients

    Get PDF
    The problem complexity of multi-criteria decision-making (MCDM) has been raised in the distribution of coronavirus disease 2019 (COVID-19) vaccines, which required solid and robust MCDM methods. Compared with other MCDM methods, the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) have demonstrated their solidity in solving different MCDM challenges. However, the fuzzy sets used in these methods have neglected the refusal concept and limited the restrictions on their constants. To end this, considering the advantage of the T-spherical fuzzy sets (T-SFSs) in handling the uncertainty in the data and obtaining information with more degree of freedom, this study has extended FWZIC and FDOSM methods into the T-SFSs environment (called T-SFWZIC and T-SFDOSM) to be used in the distribution of COVID-19 vaccines. The methodology was formulated on the basis of decision matrix adoption and development phases. The first phase described the adopted decision matrix used in the COVID-19 vaccine distribution. The second phase presented the sequential formulation steps of T-SFWZIC used for weighting the distribution criteria followed by T-SFDOSM utilised for prioritising the vaccine recipients. Results revealed the following: (1) T-SFWZIC effectively weighted the vaccine distribution criteria based on several parameters including T = 2, T = 4, T = 6, T = 8, and T = 10. Amongst all parameters, the age criterion received the highest weight, whereas the geographic locations severity criterion has the lowest weight. (2) According to the T parameters, a considerable variance has occurred on the vaccine recipient orders, indicating that the existence of T values affected the vaccine distribution. (3) In the individual context of T-SFDOSM, no unique prioritisation was observed based on the obtained opinions of each expert. (4) The group context of T-SFDOSM used in the prioritisation of vaccine recipients was considered the final distribution result as it unified the differences found in an individual context. The evaluation was performed based on systematic ranking assessment and sensitivity analysis. This evaluation showed that the prioritisation results based on each T parameter were subject to a systematic ranking that is supported by high correlation results over all discussed scenarios of changing criteria weights values

    Based on neutrosophic fuzzy environment: a new development of FWZIC and FDOSM for benchmarking smart e-tourism applications

    No full text
    Abstract The task of benchmarking smart e-tourism applications based on multiple smart key concept attributes is considered a multi-attribute decision-making (MADM) problem. Although the literature review has evaluated and benchmarked these applications, data ambiguity and vagueness continue to be unresolved issues. The robustness of the fuzzy decision by opinion score method (FDOSM) and fuzzy weighted with zero inconsistency (FWZIC) is proven compared with that of other MADM methods. Thus, this study extends FDOSM and FWZIC under a new fuzzy environment to address the mentioned issues whilst benchmarking the applications. The neutrosophic fuzzy set is used for this purpose because of its high ability to handle ambiguous and vague information comprehensively. Fundamentally, the proposed methodology comprises two phases. The first phase adopts and describes the decision matrices of the smart e-tourism applications. The second phase presents the proposed framework in two sections. In the first section, the weight of each attribute of smart e-tourism applications is calculated through the neutrosophic FWZIC (NS-FWZIC) method. The second section employs the weights determined by the NS-FWZIC method to benchmark all the applications per each category (tourism marketing and smart-based tourism recommendation system categories) through the neutrosophic FDOSM (NS-FDOSM). Findings reveal that: (1) the NS-FWZIC method effectively weights the applications’ attributes. Real time receives the highest importance weight (0.402), whereas augmented reality has the lowest weight (0.005). The remaining attributes are distributed in between. (2) In the context of group decision-making, NS-FDOSM is used to uniform the variation found in the individual benchmarking results of the applications across all categories. Systematic ranking, sensitivity analysis and comparison analysis assessments are used to evaluate the robustness of the proposed work. Finally, the limitations of this study are discussed along with several future directions

    Rise of multiattribute decision-making in combating COVID-19: A systematic review of the state-of-the-art literature

    No full text
    Considering the coronavirus disease 2019 (COVID-19) pandemic, the government and health sectors are incapable of making fast and reliable decisions, particularly given the various effects of decisions on different contexts or countries across multiple sectors. Therefore, leaders often seek decision support approaches to assist them in such scenarios. The most common decision support approach used in this regard is multiattribute decision-making (MADM). MADM can assist in enforcing the most ideal decision in the best way possible when fed with the appropriate evaluation criteria and aspects. MADM also has been of great aid to practitioners during the COVID-19 pandemic. Moreover, MADM shows resilience in mitigating consequences in health sectors and other fields. Therefore, this study aims to analyse the rise of MADM techniques in combating COVID-19 by presenting a systematic literature review of the state-of-the-art COVID-19 applications. Articles on related topics were searched in four major databases, namely, Web of Science, IEEE Xplore, ScienceDirect, and Scopus, from the beginning of the pandemic in 2019 to April 2021. Articles were selected on the basis of the inclusion and exclusion criteria for the identified systematic review protocol, and a total of 51 articles were obtained after screening and filtering. All these articles were formed into a coherent taxonomy to describe the corresponding current standpoints in the literature. This taxonomy was drawn on the basis of four major categories, namely, medical (n = 30), social (n = 4), economic (n = 13) and technological (n = 4). Deep analysis for each category was performed in terms of several aspects, including issues and challenges encountered, contributions, data set, evaluation criteria, MADM techniques, evaluation and validation and bibliography analysis. This study emphasised the current standpoint and opportunities for MADM in the midst of the COVID-19 pandemic and promoted additional efforts towards understanding and providing new potential future directions to fulfil the needs of this study field

    Integration of fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score methods under a q-rung orthopair environment: A distribution case study of COVID-19 vaccine doses

    No full text
    Owing to the limitations of Pythagorean fuzzy and intuitionistic fuzzy sets, scientists have developed a distinct and successive fuzzy set called the q-rung orthopair fuzzy set (q-ROFS), which eliminates restrictions encountered by decision-makers in multicriteria decision making (MCDM) methods and facilitates the representation of complex uncertain information in real-world circumstances. Given its advantages and flexibility, this study has extended two considerable MCDM methods the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM). The methodology formulated had two phases. The first phase 'development' presented the sequential steps of each method thoroughly.The q-ROFWZIC method was formulated and used in determining the weights of evaluation criteria and then integrated into the q-ROFDOSM for the prioritisation of alternatives on the basis of the weighted criteria. In the second phase, a case study regarding the MCDM problem of coronavirus disease 2019 (COVID-19) vaccine distribution was performed. The purpose was to provide fair allocation of COVID-19 vaccine doses. A decision matrix based on an intersection of 'recipients list' and 'COVID-19 distribution criteria' was adopted. The proposed methods were evaluated according to systematic ranking assessment and sensitivity analysis, which revealed that the ranking was subject to a systematic ranking that is supported by high correlation results over different scenarios with variations in the weights of criteria

    Novel dynamic fuzzy Decision-Making framework for COVID-19 vaccine dose recipients

    No full text
    Context: The vaccine distribution for the coronavirus disease of 2019 (COVID-19) is a multicriteria decision-making (MCDM) problem based on three issues, namely, identification of different distribution criteria, importance criteria and data variation. Thus, the Pythagorean fuzzy decision by opinion score method (PFDOSM) for prioritising vaccine recipients is the correct approach because it utilises the most powerful MCDM ranking method. However, PFDOSM weighs the criteria values of each alternative implicitly, which is limited to explicitly weighting each criterion. In view of solving this theoretical issue, the fuzzy-weighted zeroinconsistency (FWZIC) can be used as a powerful weighting MCDM method to provide explicit weights for a criteria set with zero inconstancy. However, FWZIC is based on the triangular fuzzy number that is limited in solving the vagueness related to the aforementioned theoretical issues. Objectives: This research presents a novel homogeneous Pythagorean fuzzy framework for distributing the COVID-19 vaccine dose by integrating a new formulation of the Pythagorean fuzzy-weighted zero-inconsistency (PFWZIC) and PFDOSM methods. Methods: The methodology is divided into two phases. Firstly, an augmented dataset was generated that included 300 recipients based on five COVID-19 vaccine distribution criteria (i.e., vaccine recipient memberships, chronic disease conditions, age, geographic location severity and disabilities). Then, a decision matrix was constructed on the basis of an intersection of the ‘recipients list’ and ‘COVID-19 distribution criteria’. Then, the MCDM methods were integrated. An extended PFWZIC was developed, followed by the development of PFDOSM. Results: (1) PFWZIC effectively weighted the vaccine distribution criteria. (2) The PFDOSM-based group prioritisation was considered in the final distribution result. (3) The prioritisation ranks of the vaccine recipients were subject to a systematic ranking that is supported by high correlation results over nine scenarios of the changing criteria weights values. A comparison with previous work also proved the efficiency of the proposed framework. Conclusion: The findings of this study are expected to contribute to ensuring equitable protection against COVID-19 and thus help accelerate vaccine progress worldwide

    Multi-perspectives systematic review on the applications of sentiment analysis for vaccine hesitancy

    No full text
    A substantial impediment to widespread Coronavirus disease (COVID-19) vaccination is vaccine hesitancy. Many researchers across scientific disciplines have presented countless studies in favor of COVID-19 vaccination, but misinformation on social media could hinder vaccination efforts and increase vaccine hesitancy. Nevertheless, studying people's perceptions on social media to understand their sentiment presents a powerful medium for researchers to identify the causes of vaccine hesitancy and therefore develop appropriate public health messages and interventions. To the best of the authors' knowledge, previous studies have presented vaccine hesitancy in specific cases or within one scientific discipline (i.e., social, medical, and technological). No previous study has presented findings via sentiment analysis for multiple scientific disciplines as follows: (1) social, (2) medical, public health, and (3) technology sciences. Therefore, this research aimed to review and analyze articles related to different vaccine hesitancy cases in the last 11 years and understand the application of sentiment analysis on the most important literature findings. Articles were systematically searched in Web of Science, Scopus, PubMed, IEEEXplore, ScienceDirect, and Ovid from January 1, 2010, to July 2021. A total of 30 articles were selected on the basis of inclusion and exclusion criteria. These articles were formed into a taxonomy of literature, along with challenges, motivations, and recommendations for social, medical, and public health and technology sciences. Significant patterns were identified, and opportunities were promoted towards the understanding of this phenomenon
    corecore