17 research outputs found

    The isolated carboxy-terminal domain of human mitochondrial leucyl-tRNA synthetase rescues the pathological phenotype of mitochondrial tRNA mutations in human cells.

    Get PDF
    Mitochondrial (mt) diseases are multisystem disorders due to mutations in nuclear or mtDNA genes. Among the latter, more than 50% are located in transfer RNA (tRNA) genes and are responsible for a wide range of syndromes, for which no effective treatment is available at present. We show that three human mt aminoacyl-tRNA syntethases, namely leucyl-, valyl-, and isoleucyl-tRNA synthetase are able to improve both viability and bioenergetic proficiency of human transmitochondrial cybrid cells carrying pathogenic mutations in the mt-tRNA(Ile) gene. Importantly, we further demonstrate that the carboxy-terminal domain of human mt leucyl-tRNA synthetase is both necessary and sufficient to improve the pathologic phenotype associated either with these "mild" mutations or with the "severe" m.3243A>G mutation in the mt-tRNA(L)(eu(UUR)) gene. Furthermore, we provide evidence that this small, non-catalytic domain is able to directly and specifically interact in vitro with human mt-tRNA(Leu(UUR)) with high affinity and stability and, with lower affinity, with mt-tRNA(Ile). Taken together, our results sustain the hypothesis that the carboxy-terminal domain of human mt leucyl-tRNA synthetase can be used to correct mt dysfunctions caused by mt-tRNA mutations

    Predictive Power of Tissue and Circulating Biomarkers for the Severity of Biopsy-Validated Chronic Liver Diseases

    No full text
    Background: Although liver biopsy remains the gold standard for the diagnosis and the monitoring of liver disease, non-invasive biomarkers have been recently suggested to predict liver disease severity, progression, and response to therapy. We investigated multiple tissue and circulating markers of angiogenesis in predicting the severity of biopsy-validated chronic liver diseases in patients with chronic hepatitis C virus (HCV) and in NAFLD/NASH patients. Methods: We studied samples from forty-six patients with HCV and/or NAFLD who underwent liver biopsy, liver ultrasonography, and liver stiffness measurement. Ishak and Brunt scores were calculated. Expression of selective genes and luminex analyses of 17 different circulating pro-angiogenic factors were performed. Results: The phenotype of NAFLD/NASH or HCV subjects was similar, except for insulin, which was expressed at higher levels in NAFLD/NASH patients. A Mann–Whitney test showed significant differences for the circulating levels of HB-EGF and for follistatin between HCV and NAFLD/NASH patients. In HCV patients, we found an inverse correlation between disease stage and BMP-9 and VEGF-A circulating levels, while in NASH/NAFLD direct correlations between stage and BMP-9 and VEGF-A circulating levels were noted. The K-means algorithm divided HCV and NASH/NAFLD patients in two clusters with significant differences between them. Logistic regression models showed a positive relationship with BMP-9 levels for NASH/NAFLD and with HB-EGF circulating concentrations for HCV. ROC analysis showed for BMP-9 > 1188 pg/mL a worse disease in NASH/NAFLD, whereas for HB-EGF < 61 pg/mL a higher severity of disease in HCV. Conclusion: Our data show that circulating biomarker profiles can identify the severity of chronic liver disease of NAFLD/NASH or HCV origin

    Isolated Distal Myopathy of the Upper Limbs Associated With Mitochondrial DNA Depletion and Polymerase gamma Mutations

    No full text
    Objective: To describe an unusual clinical phenotype in an adult harboring 2 compound heterozygous polymerase gamma (POLG) mutations. Design: Case report. Setting: University-based outpatient neurology clinic and pathology and genetics laboratory. Patient: A 27-year-old man presenting with isolated distal myopathy of the upper extremities in the absence of sensory disturbances. Results: Histochemical analysis of a muscle biopsy specimen showed numerous cytochrome c oxidase deficient fibers. Molecular analysis revealed marked depletion of muscle mitochondrial DNA in the absence of multiple mitochondrial DNA deletions. Sequence analysis of the POLG gene revealed heterozygous sequence variants in compound c.1156C>T (p.R386C) and c.2794C>T (p.H932Y) segregating with clinical disease in the family. The p.R386C change appears to be a novel mutation. Conclusion: Our case broadens the phenotypic spectrum of disorders associated with POLG mutations and highlights the complex relationship between genotype and phenotype in POLG-related disease

    Morphologic evidence of diffuse vascular damage in human and in the experimental model of ethylmalonic encephalopathy

    No full text
    Ethylmalonic encephalopathy (EE) is a rare autosomal recessive disorder characterized by early onset encephalopathy, chronic diarrhoea, petechiae, orthostatic acrocyanosis and defective cytochrome c oxidase (COX) in muscle and brain. High levels of lactic, ethylmalonic and methylsuccinic acids are detected in body fluids. EE is caused by mutations in ETHE1, a mitochondrial sulphur dioxygenase. By studying a suitable mouse model, we found that loss of ETHE1 leads to accumulation of sulphide, which is a poison for COX and other enzymatic activities thus accounting for the main features of EE. We report here the first autopsy case of a child with a genetically confirmed diagnosis of EE, and compare the histological, histochemical and immunohistochemical findings with those of the constitutive Ethe1 -/- mice. In addition to COX depleted cells, widespread endothelial lesions of arterioles and capillaries of the brain and gastrointestinal tract were the pathologic hallmarks in both organisms. Our findings of diffuse vascular damage of target critical organs are in keeping with the hypothesis that the pathologic effects of ETHE1 deficiency may stem from high levels of circulating hydrogen sulphide rather than the inability of specific organs to detoxify its endogenous production. © SSIEM and Springer 2011

    Role of Plakoglobin Immunohistochemistry in Diagnostic Evaluation of Juvenile Sudden Cardiac Death

    No full text
    Background: Juvenile sudden cardiac death (SCD) can be due to a variety of acquired and inherited conditions, and is often the first manifestation of a hidden genetic disease. Arrhythmogenic right ventricular cardiomyopathy (ARVC) due to mutations in desmosomal proteins is one of the most frequent causes of SCD. Autopsy diagnosis of ARVC is based on the findings of myocardial atrophy and fatty/fibro-fatty replacement. However, cases with mild and segmental fibro-fatty replacement still represent a diagnostic grey zone between desmosomal-related ARVC and non-specific myocardial changes. Immunohistochemical (IH) detection of plakoglobin (PKG), a protein of intercalated disks, has been recently proposed as a diagnostic tool for histologic diagnosis of ARVC. We studied the usefulness of this method to rule out ARVC in cases of juvenile SCD with morphologic features suggestive but not conclusive for the disease. Methods: We selected 4 cases with autopsy features suggestive of ARVC in which a clinical family screening, along with a molecular autopsy of the proband had allowed a post-mortem diagnosis of channelopathy (CPVT, figure 1; LQTS, figure 2; Brugada syndrome, figure 3 and 4). As positive controls, we used 3 explanted hearts with clinically and genetically proven ARVC (Table 1). IH was performed on paraffin slides from both ventricles, with antibodies to PKG and N-Cadherin as internal control, using immunoperoxidase with conventional labeled polymer technology, with a 1: 50.000 antibody dilution. Results: Plakoglobin was intensely expressed at myocyte intercalated disks, both in the right and left ventricles, in all cases of channelopathies with morphologic changes suggestive of ARVC. In contrast, it was markedly reduced or absent in explanted ARVC hearts, confirming the clinical and morphologic findings. According to our preliminary results, in cases of SCD with ambiguous morphologic features, diffuse positive stain of intercalated disks is useful to rule out the diagnosis of desmosomal-related ARVC. PKG immunohistochemistry can be an additional tool for autopsy diagnosis, that is crucial to guide the genetic screening of SCD, expecially in absence of a significant clinical history or previous instrumental findings

    Cardiomyopathies due to homoplasmic mitochondrial tRNA mutations: morphologic and molecular features

    No full text
    Isolated hypertrophic cardiomyopathy may represent the sole clinical feature of a mitochondrial disorder in adult patients. The clinical outcome is characterized by a rapid progression to dilation and failure. A mitochondrial etiology in these cases is not obvious at clinical investigation and may represent an unexpected finding at autopsy or after cardiac transplant. We describe the morphologic, biochemical, and molecular features of hearts from 3 transplanted patients with isolated mitochondrial cardiomyopathy caused by homoplasmic mutations in the MTTI gene, coding for mitochondrial isoleucine tRNA (mt-tRNA(Ile)). On gross examination, the 3 hearts showed a symmetric pattern of hypertrophy. At histology, cardiomyocytes were hypertrophic and showed sarcoplasmic vacuoles filled with granules that stain with antimitochondrial antibodies. On frozen sections, the combined cytochrome c oxidase (COX)/succinate dehydrogenase stain showed a large prevalence of COX-deficient cardiomyocytes. Mitochondrially encoded COX subunit I was almost absent on immunohistochemistry, whereas the nuclear-encoded COX subunit IV was normally expressed. Ultrastructural analysis confirmed the marked mitochondrial proliferation. Biochemical studies of cardiac homogenates revealed a combined respiratory chain defect. Quantitative restriction fragment length polymorphism analysis of DNA from cardiac homogenate confirmed that the mt-tRNA mutations were also detected in the patient's blood. High-resolution Northern blot analysis showed a marked decrease in the steady-state level of mt-tRNA(Ile), confirming pathogenicity. In conclusion, pathologists play a major role in unraveling the mitochondrial etiology of isolated hypertrophic cardiomyopathies, provided that a detailed diagnostic flowchart is followed. Once the mitochondrial etiology is clearly defined, molecular analyses on the heart are an invaluable tool to assign mutation pathogenicity. (C) 2013 Elsevier Inc. All rights reserved

    Isoleucyl-tRNA synthetase levels modulate the penetrance of a homoplasmic m.4277T > C mitochondrial tRNA(Ile) mutation causing hypertrophic cardiomyopathy

    No full text
    The genetic and epigenetic factors underlying the variable penetrance of homoplasmic mitochondrial DNA mutations are poorly understood. We investigated a 16-year-old patient with hypertrophic cardiomyopathy harboring a homoplasmic m.4277T>C mutation in the mt-tRNA(Ile) (MTTI) gene. Skeletal muscle showed multiple respiratory chain enzyme abnormalities and a decreased steady-state level of the mutated mt-tRNA(Ile). Transmitochondrial cybrids grown on galactose medium demonstrated a functional effect of this mutation on cell viability, confirming pathogenicity. These findings were reproduced in transmitochondrial cybrids, harboring a previously described homoplasmic m.4300A>G MTTI mutation. The pathogenic role of the m.4277T>C mutation may be ascribed to misfolding of the mt-tRNA molecule, as demonstrated by the altered electrophoretic migration of the mutated mt-tRNA. Indeed, structure and sequence analyses suggest that thymidine at position 4277 of mt-tRNA(Ile) is involved in a conserved tertiary interaction with thymidine at position 4306. Interestingly, the mutation showed variable penetrance within family members, with skeletal muscle from the patient's clinically unaffected mother demonstrating normal muscle respiratory chain activities and steady-state levels of mt-tRNA(Ile), while homoplasmic for the m.4277T>C mutation. Analysis of mitochondrial isoleucyl-tRNA synthetase revealed significantly higher expression levels in skeletal muscle and fibroblasts of the unaffected mother when compared with the proband, while the transient over-expression of the IARS2 gene in patient transmitochondrial cybrids improved cell viability. This is the first observation that constitutively high levels of aminoacyl-tRNA synthetases (aaRSs) in human tissues prevent the phenotypic expression of a homoplasmic mt-tRNA point mutation. These findings extend previous observations on aaRSs therapeutic effects in yeast and human
    corecore