12 research outputs found

    Activity and expression of urokinase-type plasminogen activator and matrix metalloproteinases in human colorectal cancer

    Get PDF
    BACKGROUND: Matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and urokinase-type plasminogen activator (uPA) are involved in colorectal cancer invasion and metastasis. There is still debate whether the activity of MMP-2 and MMP-9 differs between tumors located in the colon and rectum. We designed this study to determine any differences in the expression of MMP-2, MMP-9 and uPA system between colon and rectal cancer tissues. METHODS: Cancer tissue samples were obtained from colon carcinoma (n = 12) and rectal carcinomas (n = 10). MMP-2 and MMP-9 levels were examined using gelatin zymography and Western blotting; their endogenous inhibitors, tissue inhibitor of metalloproteinase-2 (TIMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1), were assessed by Western blotting. uPA, uPAR and PAI-1 were examined using enzyme-linked immunosorbent assay (ELISA). The activity of uPA was assessed by casein-plasminogen zymography. RESULTS: In both colon and rectal tumors, MMP-2, MMP-9 and TIMP-1 protein levels were higher than in corresponding paired normal mucosa, while TIMP-2 level in tumors was significantly lower than in normal mucosa. The enzyme activities or protein levels of MMP-2, MMP-9 and their endogenous inhibitors did not reach a statistically significant difference between colon and rectal cancer compared with their normal mucosa. In rectal tumors, there was an increased activity of uPA compared with the activity in colon tumors (P = 0.0266), however urokinase-type plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1) showed no significant difference between colon and rectal cancer tissues. CONCLUSION: These findings suggest that uPA may be expressed differentially in colon and rectal cancers, however, the activities or protein levels of MMP-2, MMP-9, TIMP-1, TIMP-2, PAI-1 and uPAR are not affected by tumor location in the colon or the rectum

    In vivo efficacy and off-target effects of locked nucleic acid (LNA) and unlocked nucleic acid (UNA) modified siRNA and small internally segmented interfering RNA (sisiRNA) in mice bearing human tumor xenografts

    No full text
    The clinical use of small interfering RNA (siRNA) is hampered by poor uptake by tissues and instability in circulation. In addition, off-target effects pose a significant additional problem for therapeutic use of siRNA. Chemical modifications of siRNA have been reported to increase stability and reduce off-target effects enabling possible therapeutic use of siRNA. Recently a large scale direct comparison of the impact of 21 different types of novel chemical modifications on siRNA efficiency and cell viability was published.1 It was found that several types of chemical modifications could enhance siRNA activity beyond that of an unmodified siRNA in vitro. In addition, a novel siRNA design, termed small internally segmented interfering RNA (sisiRNA), composed of an intact antisense strand and segmented guide strand stabilized using LNA was shown to be effective in cell based assays. In the present study we examined the in vivo efficacy of the LNA and UNA modified siRNA and sisiRNA in a mouse model bearing human tumor xenografts. We studied the biodistribution and efficacy of target knockdown in the mouse model. In addition we used whole genome profiling to assess the off-target effects in the liver of the mouse and the tumor xenografts. We report that LNA and UNA modified siRNA and sisiRNA improve the efficacy in target knockdown as compared with unmodified siRNA in the tumor xenografts without formulation. However, the level of off-target gene regulation in both the tumor and the liver correlated with the increase in efficacy in target knockdown, unless the seed region of the siRNA was modified

    Human aging in the post-GWAS era: further insights reveal potential regulatory variants

    No full text
    NoHuman aging involves a gradual decrease in cellular integrity that contributes to multiple complex disorders such as neurodegenerative disorders, cancer, diabetes, and cardiovascular diseases. Genome-wide association studies (GWAS) play a key role in discovering genetic variations that may contribute towards disease vulnerability. However, mostly disease-associated SNPs lie within non-coding part of the genome; majority of the variants are also present in linkage disequilibrium (LD) with the genome-wide significant SNPs (GWAS lead SNPs). Overall 600 SNPs were analyzed, out of which 291 returned RegulomeDB scores of 1-6. It was observed that just 4 out of those 291 SNPs show strong evidence of regulatory effects (RegulomeDB score < 3), while none of them includes any GWAS lead SNP. Nevertheless, this study demonstrates that by combining ENCODE project data along with GWAS reported information will provide important insights on the impact of a genetic variant-moving from GWAS towards understanding disease pathways. It is noteworthy that both genome-wide significant SNPs as well as the SNPs in LD must be considered for future studies; this may prove to be crucial in deciphering the potential regulatory elements involved in complex disorders and aging in particular
    corecore