2,586 research outputs found

    Analysis of Dialogical Argumentation via Finite State Machines

    Get PDF
    Dialogical argumentation is an important cognitive activity by which agents exchange arguments and counterarguments as part of some process such as discussion, debate, persuasion and negotiation. Whilst numerous formal systems have been proposed, there is a lack of frameworks for implementing and evaluating these proposals. First-order executable logic has been proposed as a general framework for specifying and analysing dialogical argumentation. In this paper, we investigate how we can implement systems for dialogical argumentation using propositional executable logic. Our approach is to present and evaluate an algorithm that generates a finite state machine that reflects a propositional executable logic specification for a dialogical argumentation together with an initial state. We also consider how the finite state machines can be analysed, with the minimax strategy being used as an illustration of the kinds of empirical analysis that can be undertaken.Comment: 10 page

    Systems analysis of bioenergetics and growth of the extreme halophile Halobacterium salinarum

    Get PDF
    Halobacterium salinarum is a bioenergetically flexible, halophilic microorganism that can generate energy by respiration, photosynthesis, and the fermentation of arginine. In a previous study, using a genome-scale metabolic model, we have shown that the archaeon unexpectedly degrades essential amino acids under aerobic conditions, a behavior that can lead to the termination of growth earlier than necessary. Here, we further integratively investigate energy generation, nutrient utilization, and biomass production using an extended methodology that accounts for dynamically changing transport patterns, including those that arise from interactions among the supplied metabolites. Moreover, we widen the scope of our analysis to include phototrophic conditions to explore the interplay between different bioenergetic modes. Surprisingly, we found that cells also degrade essential amino acids even during phototropy, when energy should already be abundant. We also found that under both conditions considerable amounts of nutrients that were taken up were neither incorporated into the biomass nor used as respiratory substrates, implying the considerable production and accumulation of several metabolites in the medium. Some of these are likely the products of forms of overflow metabolism. In addition, our results also show that arginine fermentation, contrary to what is typically assumed, occurs simultaneously with respiration and photosynthesis and can contribute energy in levels that are comparable to the primary bioenergetic modes, if not more. These findings portray a picture that the organism takes an approach toward growth that favors the here and now, even at the cost of longer-term concerns. We believe that the seemingly "greedy" behavior exhibited actually consists of adaptations by the organism to its natural environments, where nutrients are not only irregularly available but may altogether be absent for extended periods that may span several years. Such a setting probably predisposed the cells to grow as much as possible when the conditions become favorable

    Chemical composition of processed bamboo for structural applications.

    Get PDF
    Natural materials are a focus for development of low carbon products for a variety of applications. To utilise these materials, processing is required to meet acceptable industry standards. Laminated bamboo is a commercial product that is currently being explored for structural applications, however there is a gap in knowledge about the effects of commercial processing on the chemical composition. The present study utilised interdisciplinary methods of analysis to investigate the effects of processing on the composition of bamboo. Two common commercial processing methods were investigated: bleaching (chemical treatment) and caramelisation (hygrothermal treatment). The study indicated that the bleaching process results in a more pronounced degradation of the lignin in comparison to the caramelised bamboo. This augments previous research, which has shown that the processing method (strip size) and treatment may affect the mechanical properties of the material in the form of overall strength, failure modes and crack propagation. The study provides additional understanding of the effects of processing on the properties of bamboo.This work was funded by a Leverhulme Trust Programme Grant, and EPSRC Grant EP/K023403/1

    Differences in lateral gene transfer in hypersaline versus thermal environments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles.</p> <p>Results</p> <p>We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei) and a halophilic class of Archaea (Halobacteria). We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles.</p> <p>Conclusions</p> <p>Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.</p

    Counting nodal domains on surfaces of revolution

    Full text link
    We consider eigenfunctions of the Laplace-Beltrami operator on special surfaces of revolution. For this separable system, the nodal domains of the (real) eigenfunctions form a checker-board pattern, and their number νn\nu_n is proportional to the product of the angular and the "surface" quantum numbers. Arranging the wave functions by increasing values of the Laplace-Beltrami spectrum, we obtain the nodal sequence, whose statistical properties we study. In particular we investigate the distribution of the normalized counts νnn\frac{\nu_n}{n} for sequences of eigenfunctions with KnK+ΔKK \le n\le K + \Delta K where K,ΔKNK,\Delta K \in \mathbb{N}. We show that the distribution approaches a limit as K,ΔKK,\Delta K\to\infty (the classical limit), and study the leading corrections in the semi-classical limit. With this information, we derive the central result of this work: the nodal sequence of a mirror-symmetric surface is sufficient to uniquely determine its shape (modulo scaling).Comment: 36 pages, 8 figure

    Trace Formulae and Spectral Statistics for Discrete Laplacians on Regular Graphs (I)

    Full text link
    Trace formulae for d-regular graphs are derived and used to express the spectral density in terms of the periodic walks on the graphs under consideration. The trace formulae depend on a parameter w which can be tuned continuously to assign different weights to different periodic orbit contributions. At the special value w=1, the only periodic orbits which contribute are the non back- scattering orbits, and the smooth part in the trace formula coincides with the Kesten-McKay expression. As w deviates from unity, non vanishing weights are assigned to the periodic walks with back-scatter, and the smooth part is modified in a consistent way. The trace formulae presented here are the tools to be used in the second paper in this sequence, for showing the connection between the spectral properties of d-regular graphs and the theory of random matrices.Comment: 22 pages, 3 figure

    Stability of nodal structures in graph eigenfunctions and its relation to the nodal domain count

    Full text link
    The nodal domains of eigenvectors of the discrete Schrodinger operator on simple, finite and connected graphs are considered. Courant's well known nodal domain theorem applies in the present case, and sets an upper bound to the number of nodal domains of eigenvectors: Arranging the spectrum as a non decreasing sequence, and denoting by νn\nu_n the number of nodal domains of the nn'th eigenvector, Courant's theorem guarantees that the nodal deficiency nνnn-\nu_n is non negative. (The above applies for generic eigenvectors. Special care should be exercised for eigenvectors with vanishing components.) The main result of the present work is that the nodal deficiency for generic eigenvectors equals to a Morse index of an energy functional whose value at its relevant critical points coincides with the eigenvalue. The association of the nodal deficiency to the stability of an energy functional at its critical points was recently discussed in the context of quantum graphs [arXiv:1103.1423] and Dirichlet Laplacian in bounded domains in RdR^d [arXiv:1107.3489]. The present work adapts this result to the discrete case. The definition of the energy functional in the discrete case requires a special setting, substantially different from the one used in [arXiv:1103.1423,arXiv:1107.3489] and it is presented here in detail.Comment: 15 pages, 1 figur

    Urochordate Histoincompatible Interactions Activate Vertebrate-Like Coagulation System Components

    Get PDF
    The colonial ascidian Botryllus schlosseri expresses a unique allorecognition system. When two histoincompatible Botryllus colonies come into direct contact, they develop an inflammatory-like rejection response. A surprising high number of vertebrates' coagulation genes and coagulation-related domains were disclosed in a cDNA library of differentially expressed sequence tags (ESTs), prepared for this allorejection process. Serine proteases, especially from the trypsin family, were highly represented among Botryllus library ortholgues and its “molecular function” gene ontology analysis. These, together with the built-up clot-like lesions in the interaction area, led us to further test whether a vertebrate-like clotting system participates in Botryllus innate immunity. Three morphologically distinct clot types (points of rejection; POR) were followed. We demonstrated the specific expression of nine coagulation orthologue transcripts in Botryllus rejection processes and effects of the anti-coagulant heparin on POR formation and heartbeats. In situ hybridization of fibrinogen and von Willebrand factor orthologues elucidated enhanced expression patterns specific to histoincompatible reactions as well as common expressions not augmented by innate immunity. Immunohistochemistry for fibrinogen revealed, in naïve and immune challenged colonies alike, specific antibody binding to a small population of Botryllus compartment cells. Altogether, molecular, physiological and morphological outcomes suggest the involvement of vertebrates-like coagulation elements in urochordate immunity, not assigned with vasculature injury
    corecore