33 research outputs found

    Inflammatory Cells in Diffuse Large B Cell Lymphoma

    Get PDF
    Diffuse large B cell lymphoma (DLBCL), known as the most common non-Hodgkin lymphoma (NHL) subtype, is characterized by high clinical and biological heterogeneity. The tumor microenvironment (TME), in which the tumor cells reside, is crucial in the regulation of tumor initiation, progression, and metastasis, but it also has profound effects on therapeutic efficacy. The role of immune cells during DLBCL development is complex and involves reciprocal interactions between tumor cells, adaptive and innate immune cells, their soluble mediators and structural components present in the tumor microenvironment. Different immune cells are recruited into the tumor microenvironment and exert distinct effects on tumor progression and therapeutic outcomes. In this review, we focused on the role of macrophages, Neutrophils, T cells, natural killer cells and dendritic cells in the DLBCL microenvironment and their implication as target for DLBCL treatment. These new therapies, carried out by the induction of adaptive immunity through vaccination or passive of immunologic effectors delivery, enhance the ability of the immune system to react against the tumor antigens inducing the destruction of tumor cells

    Impaired bone remodeling in children with osteogenesis imperfecta treated and untreated with bisphosphonates: the role of DKK1, RANKL, and TNF-α

    Get PDF
    In this study, we investigated the bone cell activity in patients with osteogenesis imperfecta (OI) treated and untreated with neridronate. We demonstrated the key role of Dickkopf-1 (DKK1), receptor activator of nuclear factor-κB ligand (RANKL), and tumor necrosis factor alpha (TNF-α) in regulating bone cell of untreated and treated OI subjects. These cytokines could represent new pharmacological targets for OI. Introduction: Bisphosphonates are widely used in the treatment of children with osteogenesis imperfecta (OI) with the objective of reducing the risk of fractures. Although bisphosphonates increase bone mineral density in OI subjects, the effects on fracture incidence are conflicting. The aim of this study was to investigate the mechanisms underlying bone cell activity in subjects with mild untreated forms of OI and in a group of subjects with severe OI treated with cycles of intravenous neridronate. Methods: Sclerostin, DKK1, TNF-α, RANKL, osteoprotegerin (OPG), and bone turnover markers were quantified in serum of 18 OI patients (12 females, mean age 8.86 ± 3.90), 8 of which were receiving cyclic intravenous neridronate, and 21 sex- and age-matched controls. The effects on osteoblastogenesis and OPG expression of media conditioned by the serum of OI patients and anti-DKK1 neutralizing antibody were evaluated. Osteoclastogenesis was assessed in cultures from patients and controls. Results: DKK1 and RANKL levels were significantly increased both in untreated and in treated OI subjects with respect to controls. The serum from patients with high DKK1 levels inhibited both osteoblast differentiation and OPG expression in vitro. High RANKL and low OPG messenger RNA (mRNA) levels were found in lymphomonocytes from patients. High amounts of TNF-α were expressed by monocytes, and an elevated percentage of circulating CD11b-CD51/CD61+ osteoclast precursors was observed in patients. Conclusions: Our study demonstrated the key role of DKK1, RANKL, and TNF-α in regulating bone cell activity of subjects with OI untreated and treated with bisphosphonates. These cytokines could represent new pharmacological targets for OI patients

    LIGHT/TNFSF14 affects basal bone remodeling

    Get PDF
    LIGHT (TNFSF14), expressed by different cells of the immune system, binds two trans-membrane receptors: HVEM and LTβR. It is over-expressed in erosive rheumatoid arthritis and lytic myeloma-bone disease and controversial data have been published on its role in osteoclast (OC) formation in vitro. Here, we investigated the role of LIGHT on in vitro murine osteoclastogenesis model and bone phenotype in LIGHT-/- mice. Firstly, we showed that murine macrophages stimulated with LIGHT alone did not differentiate into OCs. Interestingly, the presence of LIGHT and sub-optimal RANKL concentration displayed synergic effects on OC formation through the early and sustained activation of Akt, NFκB and JNK pathways. Secondly, by microCT we found that the femurs of LIGHT-KO mice exhibited a 30% (

    Impact of 10-day bed rest on serum levels of irisin and markers of musculoskeletal metabolism

    Get PDF
    The bed rest (BR) is a ground-based model to simulate microgravity mimicking skeletal-muscle alterations as in spaceflight. Molecular coupling between bone and muscle might be involved in physiological and pathological conditions. Thus, the new myokine irisin and bone-muscle turnover markers have been studied during and after 10 days of BR. Ten young male individuals were subjected to 10 days of horizontal BR. Serum concentrations of irisin, myostatin, sclerostin, and haptoglobin were assessed, and muscle tissue gene expression on vastus lateralis biopsies was determined. During 10-days BR, we observed no significant fluctuation levels of irisin, myostatin, and sclerostin. Two days after BR (R+2), irisin serum levels significantly decreased while myostatin, sclerostin, and haptoglobin were significantly increased compared with BR0. Gene expression of myokines, inflammatory molecules, transcription factors, and markers of muscle atrophy and senescence on muscle biopsies were not altered, suggesting that muscle metabolism of young, healthy subjects is able to adapt to the hypomobility condition during 10-day BR. However, when subjects were divided according to irisin serum levels at BR9, muscle ring finger-1 mRNA expression was significantly lower in subjects with higher irisin serum levels, suggesting that this myokine may prevent the triggering of muscle atrophy. Moreover, the negative correlation between p21 mRNA and irisin at BR9 indicated a possible inhibitory effect of the myokine on the senescence marker. In conclusion, irisin could be a prognostic marker of hypomobility-induced muscle atrophy, and its serum levels could protect against muscle deterioration by preventing and/or delaying the expression of atrophy and senescence cellular markers

    CELLULAR MECHANISMS OF BONE REGENERATION: ROLE OF WNT-1 IN BONE-MUSCLE INTERACTION DURING PHYSICAL ACTIVITY

    No full text
    Wnt1 is one of the several glycoproteins activating Wnt signaling, critical for normal skeletal development and bone homeostasis. Wnt1 was previously believed to solely regulate central nervous system development, in particular in midbrain and cerebellum. However, remarkable findings have recently shown that several patients affected by severe form of Osteogenesis Imperfecta (OI) display a Wnt1 mutation thereby revealing a possible role of Wnt1 in bone metabolism. Here, we show that recombinant Wnt1 (r-Wnt1) strongly increases differentiation of bone marrow stromal cells into mature osteoblasts, as demonstrated by the enhanced number of cells positively stained for alkaline phosphatase, one of the osteoblastic marker genes, whose mRNA levels are also significantly up-regulated. Furthermore, other osteogenic master genes such as Collagen I and Osteopontin are also enhanced when bone marrow precursors were differentiated toward osteoblastic phenotype in the presence of r-Wnt1. Intriguingly, by in vivo and in vitro findings, we report that in the bone marrow of mice subjected to physical activity there is a high endogenous Wnt1 synthesis compared to mice kept in resting conditions. Moreover, conditioned medium collected from ex vivo myoblasts, harvested from exercised mice, up-regulates Wnt1 expression in osteoblast cell cultures obtained from control mice. Overall our findings support the role of Wnt1 in regulating bone metabolism and suggest that this molecule could be one of the mediators through which physical activity may exert beneficial effect on bone

    The effect of Irisin on bone cells in vivo and in vitro

    No full text
    REVIEW ARTICLE| JANUARY 15 2021 The effect of Irisin on bone cells in vivo and in vitro Cinzia Buccoliero; Angela Oranger; Graziana Colaianni; Patrizia Pignataro; Roberta Zerlotin; Roberto Lovero; Mariella Errede; Maria Grano Crossmark: Check for Updates Biochem Soc Trans (2021) BST20200978. https://doi.org/10.1042/BST20200978 Article history Share Icon Share Cite Icon Cite Get Permissions The myokine Irisin, produced during physical exercise, has an anabolic effect on bone, both in vitro and in vivo. Very recently, using a controlled in vitro 3D cell model to mimic the bone microenvironment aboard the International Space Station, it has been shown that Irisin treatment in microgravity prevents the down-regulation of the transcription factors Atf4, Runx2 and Osterix, as well as Collagen I and Osteoprotegerin proteins, crucial for osteoblast differentiation in physiologic conditions. Irisin action has also been investigated in human subjects, in which it correlates with bone health status, supporting its physiological importance also in human bone, both in healthy subjects and in patients suffering from diseases related to bone metabolism, such as hyperparathyroidism and type 1 diabetes. Low levels of circulating Irisin have been found in post-menopausal women affected by hyperparathyroidism. Furthermore, Irisin is positively correlated with bone strength in athletes and bone mineral density in football players. Moreover, in healthy children, Irisin is positively associated with bone mineral status and in children with type 1 diabetes, Irisin is positively correlated with improved glycemic control and skeletal health. In this review, we will focus on recent findings about Irisin action on microgravity induced bone loss and on osteocyte activity and survival through its αV/β5 integrin receptor

    Glucocorticoid-Induced Osteoporosis in Children with 21-Hydroxylase Deficiency

    Get PDF
    21-Hydroxylase deficiency (21-OHD) is the most common cause of congenital adrenal hyperplasia (CAH), resulting from deletions or mutations of the P450 21-hydroxylase gene (CYP21A2). Children with 21-OHD need chronic glucocorticoid (cGC) therapy, both to replace congenital deficit in cortisol synthesis and to reduce androgen secretion by adrenal cortex. GC-induced osteoporosis (GIO) is the most common form of secondary osteoporosis that results in an early, transient increase in bone resorption accompanied by a decrease in bone formation, maintained for the duration of GC therapy. Despite the conflicting results in the literature about the bone status on GC-treated patients with 21-OHD, many reports consider these subjects to be at risk for osteoporosis and fractures. In bone cells, at the molecular level, GCs regulate various functions including osteoblastogenesis, osteoclastogenesis, and the apoptosis of osteoblasts and osteocytes. In this paper, we focus on the physiology and biosynthesis of endogenous steroid hormones as well as on the effects of GCs on bone cells, highlighting the pathogenetic mechanism of GIO in children with 21-OHD

    Irisin and Secondary Osteoporosis in Humans

    No full text
    Irisin is a peptide secreted by skeletal muscle following exercise that plays an important role in bone metabolism. Numerous experiments in vitro and in mouse models have shown that the administration of recombinant irisin promotes osteogenesis, protects osteocytes from dexamethasone-induced apoptosis, prevents disuse-induced loss of bone and muscle mass, and accelerates fracture healing. Although some aspects still need to be elucidated, such as the dose- and frequency-dependent effects of irisin in cell cultures and mouse models, ample clinical evidence is emerging to support its physiological relevance on bone in humans. A reduction in serum irisin levels, associated with an increased risk of osteoporosis and bone fractures, was observed in postmenopausal women and in both men and women during aging, Recently, cohort studies of subjects with secondary osteoporosis showed that these patients have lower circulating levels of irisin, suggesting that this myokine could be a novel marker to monitor bone quality in this disease. Although there are still few studies, this review discusses the emerging data that are highlighting the involvement of irisin in some diseases that cause secondary osteoporosis
    corecore