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Abstract: Diffuse large B cell lymphoma (DLBCL), known as the most common non-Hodgkin
lymphoma (NHL) subtype, is characterized by high clinical and biological heterogeneity. The tumor
microenvironment (TME), in which the tumor cells reside, is crucial in the regulation of tumor
initiation, progression, and metastasis, but it also has profound effects on therapeutic efficacy.
The role of immune cells during DLBCL development is complex and involves reciprocal interactions
between tumor cells, adaptive and innate immune cells, their soluble mediators and structural
components present in the tumor microenvironment. Different immune cells are recruited into the
tumor microenvironment and exert distinct effects on tumor progression and therapeutic outcomes.
In this review, we focused on the role of macrophages, Neutrophils, T cells, natural killer cells and
dendritic cells in the DLBCL microenvironment and their implication as target for DLBCL treatment.
These new therapies, carried out by the induction of adaptive immunity through vaccination or
passive of immunologic effectors delivery, enhance the ability of the immune system to react against
the tumor antigens inducing the destruction of tumor cells.

Keywords: DLBCL; tumor microenvironment; tumor cells; T cells; neutrophils; NK cells; dendritic
cells; macrophages

1. Introduction

1.1. Diffuse Large B Cell Lymphoma

Diffuse large B cell lymphoma (DLBCL) a neoplasm of large B-cells arranged in a diffuse pattern,
is the most common form of non-Hodgkin’s lymphoma (NHL), accounting for about 49% of B cell
cancers worldwide [1]. The median age of prevalence of DLBCL is the seventh decade, although it
has been observed also in young adults and rarely in children with a mild male predominance [2].
In DLBCL affected patients a fast growing tumor mass develops in one or more lymph nodes and/or in
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extranodal sites. In relation to the extranodal sites, there are no limit on the organs in which the tumor
could develop, although the gastrointestinal tract constitutes the more frequent primary tumor site [3].

The complex DLBCL classification has improved over time because the tumor includes heterogenic
variants in relation to morphology, phenotype, genetic anomalies, prognosis and clinical characteristics
(Table 1) [4]. About 50 years ago, the lymphomas were classified on the basis of morphological
findings. Many aspects about the DLBCL were unknown so this cancer was called by various
names. In 1969, the Rappaport classification system allowed to recognize DLBCL as diffuse histiocytic
lymphoma [5]. As a consequence of the deepening of the immunological aspects related to the
lymphomas, the development of new monoclonal antibodies and the implementation of molecular
genetics are allowed to improve the acknowledgement of lymphomas, including DLBCL [6,7]. The high
clinical and biological DLBCL heterogeneity is due to the concept that most of these lymphomas arise
from germinal center B-cells at different stages of differentiation, in which recurrent genetic alterations
contribute to the molecular pathogenesis of the disease [8].

Table 1. 2016 update of WHO classification of DLBCL: subtypes and related entities [4].

Diffuse large B-cell lymphoma, NOS
GCB versus ABC/non-GCB

MYC and BCL2 double expressor
CD5+

DLBCL subtypes

T-cell/histiocyte-rich large B-cell lymphoma
Primary DLBCL of the central nervous system

Primary cutaneous DLBCL, leg type
EBV positive DLBCL, NOS

Other lymphomas of large B-cells

Primary mediastinal (thymic) large B-cell lymphoma
Intravascular large B-cell lymphoma

DLBCL associated with chronic inflammation
Lymphomatoid granulomatosis

ALK-positive DLBCL
Plasmablastic lymphoma

HHV8+ DLBCL, NOS
Primary effusion lymphoma

Borderline cases

High-grade B-cell lymphoma, with MYC and BCL2 and/or BCL6
translocations

High-grade B-cell lymphoma, NOS
B-cell lymphoma, unclassifiable, with features intermediate

between DLBCL and classical Hodgkin lymphoma

DLBCL: diffuse large B-cell lymphoma; ABC: activated B-cell like; GCB: germinal center B-cell like; HHV8: human
herpesvirus 8; MYC: MYC proto-oncogene; NOS: not otherwise specified; EBV: Epstein-Barr Virus; ALK: Anaplastic
lymphoma kinase; Bcl-2: B-cell lymphoma 2; Bcl-6: B-cell lymphoma 6; WHO: World Health Organization.

1.2. Tumor Microenvironment Immune Cells

Cancers develop in complex tissue environments in which the tumor cells are surrounded by
various types of cells, extracellular components and a vascular network that constitute the tumor
microenvironment (TME) (Figure 1). The TME is involved in the regulation of tumor initiation,
progression, and metastasis, but it also has profound effects on therapeutic efficacy [9]. The inflammatory
microenvironment is an essential component of tumor microenvironment. Tissue-resident lymphocytes
constitutively reside in non-lymphoid tissues, and generally do not re-circulate through blood [10].
Infiltrating lymphocytes have moved from the blood into a tissue. Tumor-infiltrating lymphocytes can
recognize and kill cancer cells. The features of tumor infiltrating immune cells are correlated with the
development and progression of cancer [11]. In cancer therapy, tumor-infiltrating lymphocytes are
removed from a patient’s tumor, grown in large numbers, and then given back to the patient to help
the immune system kill the cancer cells. In the recent years, many studies have demonstrated that
the inflammatory microenvironment, growth factors, activated stroma, and DNA-damage-promoting
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agents, potentiates and/or promotes neoplastic risk. The balance of cytokines in any given tumor is
critical for regulating the type and extent of inflammatory infiltrate that forms [12–14]. The abnormal
expression of chemokines/chemokine receptors in DLBCL cells at mRNA and protein levels suggests
a functional role for these chemokines in the interaction between lymphoma cells and tumor
microenvironment [15]. These chemotactic interactions not only influence the biological properties
of DLBCL cells, but also cause the tumor cells to increase immunosuppression, that further enhance
tumor growth. Therefore, abnormal secretion of chemokines/chemokine receptors, which is earlier
than imaging examination, may become effective means for predicting or targeting DLBCL [15].
Gupta et al. [16] found that the JAK/STAT pathway is strongly activated in DLBCL patients and
the cytokines involved in the activation, included interelukin-2, -6 and -10 (IL-2, IL-6 and IL-10),
and epidermal growth factor (EGF). In particular IL-10–induced JAK2 and STAT3 signaling [17].
It has also been showed that IL-10/IL-10 receptor (IL-10R) is the major cytokine involved in the
activation of JAK2 in DLBCL cells. Hashwah and collaborators in a recent work showed that the
IL-6 signaling pathway results activated in a subset of DLBCL patients especially of the ABC subtype
with poor prognosis. Moreover, it seems that IL6 expression is correlated with the co-expression
of active STAT3 and gp130 [18]. Cells resident in tumor inflammatory microenvironment, include
macrophages, neutrophils, mast cells, myeloid derived suppressor cells, dendritic cells, natural killer
cells, and T and B lymphocytes capable of producing an assorted array of cytokines, cytotoxic mediators,
including reactive oxygen species, serine and cysteine proteases, matrix metalloproteinases (MMPs),
membrane-perforating agents, and soluble mediators of cell killing, such as tumor necrosis factor
alpha (TNF-α), interleukins and interferons (IFNs) [19,20]. A strong correlation between the activation
of NF-κB or STAT3 has been found to operate by the infiltrating immune cells and the induction of
pro-tumorigenic processes such as survival, proliferation, growth, angiogenesis, and invasion. On the
other hand, the activation of NF-κB/STAT3 pathway stimulates the expression of immune/inflammatory
cells attracting mediators, which sustain tumor-associated inflammation [21]. Understanding the
tumor microenvironment allowed in the past decade the renewal of immunology and immunotherapy
and the latter is now recognized as an important tool in the anti-tumor treatment. These new therapies
carried out by induction of adaptive immunity through vaccination or passive of immunologic effectors
delivery enhance the ability of the immune system to react against the tumor antigens inducing the
destruction of tumor cells.
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Figure 1. Some interactions involving the immune infiltrating cells in DLBCL microenvironment. The 
activation of PD-1 by its ligand PD-L1 induces the block of cell-cycle progression in CD4+ T cells (a). 
Antibodies blocking the interaction PD-1/PD-L1 restores the T cell mediated antitumor immune 
response (b). NK cells recognize CD20-Ab-coated cells by the type IIIA Fc receptor (FcRγIIIa; CD16a) 
and trigger NK cell-mediated ADCC, resulting in rapid NK-cell activation and degranulation (c). The 
activation of NKp44 improves the role of NK-cells against malignant cells (d). pDC/DC2 dendritic 
cells stimulate antigen naïve CD4+CD45RA+ T cells to differentiate into Th2 (e). DC1s are stimulated 
with tumor necrosis factor α (TNFα) acquire the capacity to induce the differentiation of naïve 
CD4+CD45RA+ T-cell to Th1 cells (f). Memory T characterized by a CD4+/CD45RO1 phenotype 
decrease the tumor proliferation rate (g). Tumor cells are able to recruit neutrophils considered as the 
major source of APRIL, through the release of CXCL8. APRIL binds to BCMA and TACI stimulating 
B cell maturation and differentiation and survival (h). CD163+ macrophages enhance 
immunosuppression and angiogenesis in tumor progression (i). 

1.3. Epithelial Mesenchymal Transition (EMT) and Inflammatory Cells 

Epithelial-mesenchymal transitions (EMTs), the acquisition of mesenchymal features from 
epithelial cells, are classified into three types: the first type occurs during embryonic development, 
the second type is associated with adult tissue regeneration, and the third type occurs in cancer 
progression. Approximately 90% of cancers exhibit some degree of EMT during their progression. 
After activation of EMT, tumor cells lose their epithelial features, including cell adhesion and polarity, 
reorganize their cytoskeleton, and acquire a mesenchymal morphology and the ability to migrate. 
Moreover, during EMT, a phenotypic switch has been observed with carcinomas that promotes the 
progression towards metastasis. Increasing literature data have emphasized that a link exists between 
cancer-associated EMT and chronic inflammation [22,23]. The link between EMT and immune 
recognition, and killing of cancer cells, is well-established and EMT contributes to immune escape of 
tumors. Recent reports have begun to investigate how the acquisition of mesenchymal features by 
carcinoma cells could also contribute to the development of an inflammatory and 

Figure 1. Some interactions involving the immune infiltrating cells in DLBCL microenvironment.
The activation of PD-1 by its ligand PD-L1 induces the block of cell-cycle progression in CD4+ T cells (a).
Antibodies blocking the interaction PD-1/PD-L1 restores the T cell mediated antitumor immune response
(b). NK cells recognize CD20-Ab-coated cells by the type IIIA Fc receptor (FcRγIIIa; CD16a) and trigger
NK cell-mediated ADCC, resulting in rapid NK-cell activation and degranulation (c). The activation of
NKp44 improves the role of NK-cells against malignant cells (d). pDC/DC2 dendritic cells stimulate
antigen naïve CD4+CD45RA+ T cells to differentiate into Th2 (e). DC1s are stimulated with tumor
necrosis factor α (TNFα) acquire the capacity to induce the differentiation of naïve CD4+CD45RA+

T-cell to Th1 cells (f). Memory T characterized by a CD4+/CD45RO1 phenotype decrease the tumor
proliferation rate (g). Tumor cells are able to recruit neutrophils considered as the major source of APRIL,
through the release of CXCL8. APRIL binds to BCMA and TACI stimulating B cell maturation and
differentiation and survival (h). CD163+ macrophages enhance immunosuppression and angiogenesis
in tumor progression (i).

1.3. Epithelial Mesenchymal Transition (EMT) and Inflammatory Cells

Epithelial-mesenchymal transitions (EMTs), the acquisition of mesenchymal features from
epithelial cells, are classified into three types: the first type occurs during embryonic development,
the second type is associated with adult tissue regeneration, and the third type occurs in cancer
progression. Approximately 90% of cancers exhibit some degree of EMT during their progression.
After activation of EMT, tumor cells lose their epithelial features, including cell adhesion and polarity,
reorganize their cytoskeleton, and acquire a mesenchymal morphology and the ability to migrate.
Moreover, during EMT, a phenotypic switch has been observed with carcinomas that promotes
the progression towards metastasis. Increasing literature data have emphasized that a link exists
between cancer-associated EMT and chronic inflammation [22,23]. The link between EMT and immune
recognition, and killing of cancer cells, is well-established and EMT contributes to immune escape of
tumors. Recent reports have begun to investigate how the acquisition of mesenchymal features by
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carcinoma cells could also contribute to the development of an inflammatory and immunosuppressive
tumor microenvironment in breast cancer [24–28] and metastatic non-small cell lung cancer [29].

2. Immune Infiltrating Cells

2.1. Macrophages

Tumor-associated macrophages (TAMs) derive from recruited monocytes and constitute a
significant component of inflammatory infiltrates in neoplastic tissues. TAMs are CD68+ cells
and have a dual role in neoplastic lesions. Macrophages possess remarkable plasticity and change
their phenotype according to environmental stimuli. The M1 subset, which is involved in antitumor
immunity and anti-angiogenesis and M2 CD163+ subset, have the opposing roles of enhancing
immunosuppression and angiogenesis in tumor progression, and may be considered the two extremes
of a large spectrum that can exert anti- and pro-tumoral activities [30,31]. It has been observed that
macrophages are the major component in the microenvironment of DLBCL [32]. Studies on the gene
expression profiles of DLBCL biopsy specimens have revealed the increased infiltration of macrophages
into DLBCL stroma [33,34]. Patients with higher expression of CD68 in tumor microenvironment have
a tendency to have poor treatment outcome of DLBCL [32]. In this context, an antibody against CD68
has been used as curative intent in a study involving DLBCL patients. The results of this trial did
not show any significant correlation between the number of CD68+ cells and other clinical factors.
Likewise, nor correlation was found between CD68+ cells in germinal center B-cell (GCB)/non-GCB
immunophenotype or low/high Ki-67 percentage. Other data suggests the absence of significant
correlation between the amount of CD68+ cells and progression-free survival or overall survival.
These data have stated that the pro-tumorigenic effect of CD68+ macrophages has limited clinical
relevance in DLBCL patients [35]. Although, CD68+ cell number seems don’t show any correlation with
angiogenic response in both chemo-sensitive (GCB) and -resistant (ABC) DLBCL patients, it resulted
increased in chemoresistant ones indicating an indirect role in stimulating angiogenesis [36,37]. While,
the CD163/CD68 + cells ratio as predictive index for a poorer prognosis of DLBCL is still controversial,
M2 macrophages seems to have an active role in tumor progression in DLBCL patient [38]. The increased
CD163/CD68+ cells ratio and the content of CD163+ cells were linked to unfavorable prognosis [39].
Nam et al. evaluated the amount of M2 macrophages in R-CHOP (Rituximab, C: Cyclophosphamide, H:
Doxorubicin Hydrochloride, O: Vincristine Sulfate, P: Prednisolone) treated DLBCL patients and they
found that the higher number of CD163+ and CD163/CD68 + cells ratio was significantly associated
with shorter overall survival. These data indicated that M2 could have a central role in the promotion of
lymphoma function in DLBCL and in predicting poor clinical outcome [40]. The analysis of the tumor
inflammatory microenvironment composition in DLBCL patients revealed the significant increased
number of CD163+ cells in the ABC group of patients and a positive correlation between CD163+

cells and STAT3 expression in tumor cells [41]. The expression of STAT3 in tumor correlated with the
increased angiogenesis in ABC group of patients [41].

2.2. Neutrophils

Studies concerning a large cohort of DLBCL patients concluded that patients with higher NLR
(neutrophil to lymphocyte ratio) were more likely to have poorer prognosis than those with lower
NLR [42]. Nowadays, NLR constitutes a prognostic value for patients with DLBCL [43]. Neutrophils
are myeloid cells and account for approximately 50–70% of all white blood cells. Neutrophils represent
the frontline defense against invading pathogens and the major component of the inflammatory
process [44]. Tumor-infiltrating neutrophils TAN have been implicated in malignant development
and progression, but mechanisms are still debated. TAN may acquire two different phenotypes: the
N1 anti-tumorigenic phenotype or the N2 pro-tumorigenic phenotype and are classified, based on
the state of their activation, cytokine expressed and effects on tumor growth [45]. The N1 phenotype
is involved in cytotoxic activity against tumor cells and its immune profile is characterized by high
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levels of TNFα, CCL3, ICAM-1 and low levels of Arginase. The N2 neutrophils are characterized by
upregulation of the chemokines CCL2, CCL3, CCL4, CCL8, CCL12, and CCL17, and CXCL1, CXCL2,
IL-8/CXCL8 and CXCL16 and are involved in tumor growth, invasion, metastasis, angiogenesis and
immunosuppression [46]. Specifically, N1 neutrophils are able to recruit CD8+T cells trough the
production of a series of chemokines and cytokines including CCL3, CXCL9, CXCL10, IL-12, TNFα,
granulocyte macrophage-colony stimulating factor (GM-CSF), and vascular endothelial growth factor
(VEGF) [47]. It has been found that exists a crosstalk between CD4+, T helper 17 cells (Th17) and
neutrophils mediated by the liberation of factors that include IL-17, CXCL8, TNFα, IFNγ and GM-CSF
by Th17 and of CCL2, CCL20 by neutrophils [47–49]. Interestingly, a protein belonging to the TNF
superfamily named A Proliferation-Inducing TNF Ligand (APRIL) co-stimulates B-cell activation and
when overexpressed in mice induces B-cell neoplasia [50,51]. APRIL up-regulation has been observed
in 46% of DLBCL patients where neutrophil it is revealed to be the main source of APRIL in tumor
microenvironment. APRIL binds and accumulate by proteoglycans and its accumulation is correlated
to the aggressiveness of lymphoma [52]. APRIL binds to BCMA (B cell maturation antigen) and TACI
(transmembrane activator and CAML-interactor). B-cell maturation antigen (BCMA), in turn activates
B-cell activating factor (BAFF) triggering to an intracellular signaling cascade JNK and NFkB mediated.
The result is B cell maturation and differentiation into plasma cells [53]. The expression of BCMA has
been expressed in B cell lymphoma highlighting its targeting in the potential use for the treatment
of DLBCL patients [54–56]. Manfroi in a recent work demonstrated that in a significant fraction of
DLBCL patients, tumor cells are able to recruit APRIL producing neutrophils through the release of
CXCL8 in both GC and non-GC DLBCL subtypes that in turn induce DNA methylation and acetylation,
crucial in DLBCL progression [57]. Moreover, Nie and coworkers suggest that also tumor-NETs
(Neutrophil extracellular traps) is a useful prognostic biomarker in DLBCL. NETs formation implies
the activation of Src, p38 and ERK signaling. NETs itself directly upregulates the Toll-like receptor 9
(TLR9) pathways in DLBCL and then NF-κB, STAT3 and p38 pathways promoting tumor progression.
They also showed that disruption of NETs, blocking CXCL8-CXCR2 axis or inhibiting TLR9 could
retard tumor progression in preclinical models [58].

2.3. Dendritic Cells

Dendritic cells (DCs) belong to antigen-presenting cells and their role is crucial in naïve T cells
priming. The human circulating DCs population include two subsets that develop independently
from a common precursor cell [59]. The first one is named as mDC/DC1 and includes CD11+ cells.
When DC1s are stimulated with tumor TNF-α acquire the capacity to induce the differentiation of
naïve CD4+CD45RA+ T-cell to Th1 cells. The second population, the pDC/DC2 has CD11c−/CD123
bright immunophenotype. The first one is named as mDC/DC1 and includes CD11+ cells. When DC1s
are stimulated with TNF-α acquire the capacity to induce the differentiation of naïve CD4+CD45RA+

T-cell to Th1 cells. The second population, the pDC/DC2 has CD11c−/CD123 bright immunophenotype.
These cells stimulate antigen naïve CD4+CD45RA+ T cells to differentiate into Th2 cells [60,61].
The presence of CD11+ DCs and granzyme B+ T cells into the tumors associated with denser S100 +

cells and CD45RO+ T cells around the tumor edge correlated with a favorable prognosis [62]. A recent
study investigated the role of CD11c positive DCs in DLBCL, indicating DCs and T-regulatory cells
as mediators of anti-tumor factor production [63]. DCs are efficient antigen-presenting cells eliciting
T-cell–mediated tumor destruction [64]. When pulsed with tumor-derived antigens or transduced
with tumor antigen-encoding viruses or nucleic acids and then administered as a cellular vaccine, DCs
promote protective and even therapeutic antitumor immunity in murine tumor models, providing a
convincing basis for the clinical use of DCs in active vaccination strategies against human cancer [65].
Tumor-specific clonal immunoglobulin expressed by B-cell lymphomas have been used to pulse DCs
in order to create and administrate a vaccine in patients with follicular B-cell lymphoma. All patients
developed measurable antitumor cellular immune responses with cases of complete tumor regression or
partial tumor regression [66]. In a pilot study in indolent B-NHL patients vaccination with autologous



J. Clin. Med. 2020, 9, 2418 7 of 17

DCs, loaded with apoptotic and necrotic autologous tumor cells, has been used, which induced
an increased natural killer (NK) cell activation parallel to a decrease in T-reg and induction of T-
and B-cell antitumor responses [67]. The administration of antigenic or pro-inflammatory signals to
improve DC engulfing, cross-presentation, and maturation, may increase the efficacy of DC-based
vaccines [68]. Moreover, DCs transduced with RNA derived from lymphoma cell lines stimulate
T-cell responses against HL-associated tumor antigens [69]. This latter technique is considered very
interesting considered the minimal sample size required for the amplification of total tumor RNA.

2.4. T Lymphocytes

The adaptive immune cells influence the behavior of human tumors modulating tumor growth
and invasion, and may constitute an important prognostic tool [70]. Evaluation of CD8+ cytotoxic T
cells and CD45RO+ memory T cells in specific tumor regions could provide a useful information for
the prediction of tumor recurrence and survival [71]. The shift to the T helper 2 (Th2) and T regulatory
(Treg) immunosuppressive phenotypes correlates with the switch of cancer to an invasive form and
confers the acquisition of immune response evasion properties [72]. T lymphocytes are component
of DLBCL microenvironment. It is thought that their presence did not constitute only a residual
element from the normal lymph node structure [73]. One of the first paper about the relation between
T cell infiltration (TIL) and DLBCL claimed that in large B-cell lymphoma, a low percentage of Leu-2+

TILs correlated with a reduction in relapse free survival [74]. Other studies investigated the critical
role exerted by T-lymphocytes in containing the malignant clone and in immunosurveillance and
hypothesized that the tumor infiltrating CD4+ T cell may be even more important than CD8+ cells
in determining patient outcome [75]. Memory T cells are involved in the downregulation of tumor
proliferation rate [76], and DLBCL patients with less than 20% of infiltrating CD4+ cells have an inferior
failure-free survival and overall survival [73]. Moreover, it was also shown that these cells are memory
T cells characterized by a CD4+/CD45RO1 phenotype, and further studies showed that an increased
number of activated memory CD4+ T cells infiltrating areas of B-cell lymphoma correlates with a
lower proliferative rate of cells [73]. CD4+ follicular T-cells are partially defined by the high expression
of Programmed cell death 1 (PD-1) and comprise both follicular helper (Tfh) T-cells and repressive
(Tfr) T-cells [77]. PD-1, is an immune-inhibitory receptor belonging to B7 receptor family that when
activated by its ligand PD-L1 induces the block of cell-cycle progression in T cells, and the inhibition of
cytokine production [78]. Although, the high presence of PD1+ TIL is correlated with unfavorable
prognosis it has been reported that in DLBCL patients the higher PD-1 expression on tumor-infiltrating
lymphocytes predicts a favorable overall survival [79]. Among the TIL, a hi PD-1 and FoxP3+ cell
populations have been described in DLBCL microenvironment and the number of PD-1hi and FoxP3+

cells, as well as total CD4+ T-cells are associated with improved clinical outcome [80]. Preventing the
interaction PD-1/PD-L1 by the immune-targeting of tumor cells using humanized antibodies against
PD-1 or PD-L1 could restore the anti-tumor activity of the T cells [81]. The objective response rates to
this therapy in patients with relapsed/refractory DLBCL remain of modest entity (10–36%) [82–84],
depending on the high clinical and biological heterogeneity nature of DLBCL, as demonstrated by
gene expression profiling and large-scale genomic analyses [8,85]. It could be useful to deepen the
characterization of TIL in order to better understand or discovery the biological markers useful to select
the patients adapt to anti PD1/PDL1 treatment. PD-L1 gene alterations are associated with response
to PD-1 blockade in DLBCL and PD-L1 alterations have been used to identify a unique biological
subset of DLBCL in which an endogenous anti-lymphoma immune response has been activated, and is
associated with responsiveness to PD-1 blockade therapy [83].

PD-1/PD-L1 Blockade Therapy

Recently it was emerged that of PD-1/PD-L1 blockade therapy may have a beneficial influence on the
efficacy of a recent emerging immunotherapy that utilize T lymphocytes [86,87]. This immunotherapy
has been used in various diseases including hematological malignancies, solid tumors, autoimmune
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diseases, and allergic diseases such as asthma. The basis for this immunotherapy are the T cells that
can be genetically manipulated in order to express a chimeric antigen receptor (CAR) other than their
T cell receptor (TCR) (Figure 2). CAR induces the specific antigen targeting without the involvement of
MHC system so bypassing the tumor cells immune evasion mechanism [88]. The CAR specificity has
been obtained by the combination of B cell receptor derived and T cell receptor domains. CAR design
has evolved over the years to enhance efficacy and safety in particular immunologic settings. It is
derived by the fusion of three domains: The extracellular, the transmembrane and two intracellular
domains, the costimulatory and the zeta chain domain. CAR extracellular domain does not comprise
alpha and beta chains but is composed of single chain variable fragments (scFv), derived from heavy
and light chain variable domains of the antibody. CAR must recruit endogenous downstream signaling
molecules to transduce activating signal, but co-stimulation is provided in cis and in response to the
same activating signal. Different generations of CARs can be distinguished (Figure 3).
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The second-generation CAR-T cells have stimulating signaling domains (CD28, CD 137/4-1BB)
responsible for T cell activation and expansion. Moreover, these domains stimulate the expansion of
memory T cells and the survival of CAR-T cells [89]. The third generation of CARs the combination of
multiple signaling domains (CD3z-CD28- CD134/OX40 or CD3z-CD28-CD137) enhanced the cytokine
production and killing ability [90]. These third CARs generation have been used in the treating of
lymphoma and colon cancer but the results of the few data available were comparable to the second
generation [91,92]. The fourth generation of CARs are also named as TRUCKs (T cell redirected for
universal cytokine-mediated killing) and have been obtained by the insertion of IL-12 to the construct of
the second generation CARs. In this way, the activation of T cell is enhanced, as well as the recruitment
the innate immunity, in order to eliminate antigen-negative cancer cells [93,94]. Increasingly, data on
the therapeutic use of CARs against CD19 in hematological disease are emerging in recent years. CD19
is an integral membrane glycoprotein expressed by premature and mature B cells as well as on the
majority of B cell malignancies. In this context in first Food and Drug Administration (FDA) and then
European Medicines Agency (EMA), approved the use of Car T cells to overcome refractoriness and
improve outcome when the conventional chemotherapy often fails in relapsed patients.

Axicabtagene ciloleucel (KTE-C19) is an immunotherapy treatment based on genetically modified
autologous T cells in order to recognize the CD19 antigen used to treat adult patients with
refractory/relapsed (r/r) DLBCL and primary mediastinal B cell lymphoma (PMBCL) after 2 or more
systemic lines of therapy. Tisagenlecleucel has been approved. For pediatric and young adult patients
affected by B cell acute lymphoblastic leukemia (ALL) and patients with r/r DLBCL tisagenlecleucel has
been approved. Another CD19-directed CAR-T cell product still under investigation in TRANSCEND
trial study (CTN02631044) is the lisocabtagene maraleucel JCAR017. This drug is composed of a
well-defined ratio of CD4+ and CD8+ lymphocytes transduced with a lentiviral vector in order to
express anti-CD19 scFv fused to CD137, the CD3-zeta, and a truncated form of the human epidermal
growth factor receptor (EGFRt). EGFRt both facilitates the detection of the administered CARs and the
promotion of their elimination through a cetuximab-induced ADCC response. The CD137 enhances
both proliferation of T cells and antitumor activity [95,96].



J. Clin. Med. 2020, 9, 2418 10 of 17

Although, CAR-T cell therapy have shown encouraging results for patients who have no adequate
treatment alternatives, it has also been associated with significant adverse effects, including tissue
inflammation, neurotoxicity, hypoplasia in target cells, heart and pulmonary vasculature toxicity,
cholangitis, injury to bile duct epithelial cells, and anaphylactic shock, which can be severe or lead to
death [97–99]. Moreover, not all the treated patients respond to CAR-T cell therapy because of the loss
of epitope or specific mutations in patients relapsing after CAR-T cells, but is working to reduce this
problem [100,101].

2.5. Natural Killers Cells

Natural killer (NK) cells are a subclass of lymphocytes considered to be an important component of
the immune system by controlling microbial infections and tumor progression [102]. NK are CD3−CD56+

cells able to recognize and kill malignant cells without previous sensitization, and include two major
phenotypes on the basis of their level of CD56 expression: The mature cytotoxic CD16+CD56dim (90% of
circulating NK cells), and the less mature cytokine producing CD16−CD56brigt cells, which reside
predominantly in lymphoid tissue [103]. Although, they were discovered more than 40 years ago,
due to their important role in acquired immune response, especially in the induction of memory for
specific antigen for secondary immune response, NK cells have recently been attracting attention for
their potential in immune-based therapies [104]. DLBCL patients showed lymphocytopenia involving
the CD4+, CD8+ T, and NK cell subsets, but only NK cells number is correlated with induction treatment
response and event free survival [105]. In many hematologic malignances, it has been observed that
various mechanisms adopted by tumor cells escape from NK innate immune pressure, including the
abnormal NK cytolytic functions [106]. In DLBCL the anti-CD20 monoclonal antibody rituximab
constitute the keystone in the treatment of patients. Rituximab causes the elimination of CD20+ B
cells by antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity and
direct induction of apoptosis [107]. In this context NK cells recognize CD20-Ab-coated target cells by
the activating type IIIA Fc receptor (FcRγIIIa; CD16a) and trigger NK cell-mediated ADCC, resulting
in rapid NK-cell activation and degranulation [108,109]. With the intent of NK cell activation as a
strategy to improve the immunotherapy of DLBCL, authors studied NKp44, one of NCR receptors,
which its activation improve its role against malignant cells [110]. The Increased expression of NKp44
was associated with lower values of LDH and earlier stages of DLBCL, hence, improvement of its
function could constitute an approach of immunotherapy of DLBCL [110,111].

Although, research has mainly concentrated on the effect of PD-1 blockade on T cells, the recurrent
deficits in major histocompatibility complex class I/II-associated antigen presentation in DLBCL cells
suggested that the inhibition of PD-1 also involve additional mechanisms of action to that of cytotoxic
T-cell-mediated killing in these lymphomas [112,113]. Moreover this defect enhance malignant B cells
sensitivity to human CD3−CD56+ NK cells [114]. In this context, the therapeutic monoclonal antibodies
in DLBCL enhance NK cytotoxicity against tumor cells [115]. Interestingly Vari et al described an
unknown immune evasion mechanism in which is involved an alteration in the proportion of NK cells
with a PD-1hiCD3−CD56hiCD16-ve phenotype. Moreover, they hypothesized that the inhibition of NK
cells occurs by PD-L1/PD-L2 expressing CD163+ monocyte/macrophages [116].

3. Concluding Remarks

Inflammation has been strongly correlated with cancer, implying a role for the inflammatory
infiltrate to enhance the development of malignancies. Inflammatory cells establish a cross-talk with
tumor cells, stromal cells and endothelial cells to create a complex microenvironment, essential for
the survival and development of the malignancy. DLBCL is a disease characterized by a complex
pathogenesis and behavior due to its clinical and biological heterogeneity but also to the TME
composition and its interactions with neoplastic cells. In addition to current DLBCL classification
criteria, and other prognostic markers, microenvironment evaluation constitutes a helpful instrument
to better discriminate the groups of patients with worse prognosis and individuate new therapeutic
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approaches for the administration of personalized therapy. Although, the DLBCL biology knowledge
has improved, the molecular mechanism, through the different elements of TME, regulates its
aggressiveness has to be deepened and further studies with larger cohorts and longer follow-up have
to be encouraged. Current frontline DLBCL therapy although fairly successful (70–80% remission rates
with the standard R-CHOP chemotherapy regimen) is frequently followed by relapse (40% of cases
within 2–3 years), with an often refractory DLBCL. Microenvironment-directed therapy represents
important tools for the treatment of human lymphomas.
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