241 research outputs found
Overview on sugar metabolism and its control in Lactococcus lactis - The input from in vivo NMR
The wide application of lactic acid bacteria in the production of fermented foods depends to a great extent on the unique features of sugar metabolism in these organisms. The relative metabolic simplicity and the availability of genetic tools made Lactococcus lactis the organism of choice to gain insight into metabolic and regulatory networks. In vivo nuclear magnetic resonance has proven a very useful technique to monitor non-invasively the dynamics of intracellular metabolite and co-factor pools following a glucose pulse. Examples of the application of this methodology to identify metabolic bottlenecks and regulatory sites are presented. The use of this information to direct metabolic engineering strategies is illustrated. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved
A two-component signal-transduction cascade in Carnobacterium piscicola LV17B:two signaling peptides and one sensor-transmitter
In the lactic acid bacterium Carnobacterium piscicola LV17B a peptide-pheromone dependent quorum-sensing mode is involved in the regulation of bacteriocin production. Bacteriocin CB2 was identified as an environmental signal that induces bacteriocin production. Here, we demonstrate that a second 24 amino acid peptide (CS) also induces bacteriocin production. Transcription activation of several carnobacteriocin operons is triggered by CB2 or CS via a two-component signal transduction system composed of CbnK and CbnR. (C) 2001 Elsevier Science Inc. All rights reserved
Post-translational modification of therapeutic peptides by NisB, the dehydratase of the lantibiotic nisin
Post-translationally introduced dehydroamino acids often play an important role in the activity and receptor specificity of biologically active peptides. In addition, a dehydroamino acid can be coupled to a cysteine to yield a cyclized peptide with increased biostability and resistance against proteolytic degradation and/or modified specificity. The lantibiotic nisin is an antimicrobial peptide produced by Lactococcus lactis. Its post-translational enzymatic modification involves NisB-mediated dehydration of serines and threonines and NisC-catalyzed coupling of cysteines to dehydroresidues, followed by NisT-mediated secretion. Here, we demonstrate that a L. lactis strain containing the nisBTC genes effectively dehydrates and secretes a wide range of medically relevant nonlantibiotic peptides among which variants of adrenocorticotropic hormone, vasopressin, an inhibitor of tripeptidyl peptidase II, enkephalin, luteinizing hormone-releasing hormone, angiotensin, and erythropoietin. For most of these peptides, ring formation was demonstrated. These data show that lantibiotic enzymes can be applied for the modification of peptides, thereby enabling the biotechnological production of dehydroresidue-containing and/or thioether-bridged therapeutic peptides with enhanced stability and/or modulated activities.</p
Novel mechanism of bacteriocin secretion and immunity carried out by lactococcal multidrug resistance proteins
A natural isolate of Lactococcus lactis was shown to produce two narrow spectrum class II bacteriocins, designated LsbA and LsbB. The cognate genes are located on a 5.6-kb plasmid within a gene cluster specifying LmrB, an ATP-binding cassette-type multidrug resistance transporter protein. LsbA is a hydrophobic peptide that is initially synthesized with an N-terminal extension. The housekeeping surface proteinase HtrA was shown to be responsible for the cleavage of precursor peptide to yield the active bacteriocin. LsbB is a relatively hydrophilic protein synthesized without an N-terminal leader sequence or signal peptide. The secretion of both polypeptides was shown to be mediated by LmrB. An L. lactis strain lacking plasmid-encoded LmrB and the chromosomally encoded LmrA is unable to secrete either of the two bacteriocins. Complementation of the strain with an active LmrB protein resulted in restored export of the two polypeptides across the cytoplasmic membrane. When expressed in an L. lactis strain that is sensitive to LsbA and LsbB, LmrB was shown to confer resistance toward both bacteriocins. It does so, most likely, by removing the two polypeptides from the cytoplasmic membrane. This is the first report in which a multidrug transporter protein is shown to be involved in both secretion and immunity of antimicrobial peptides.
From DNA sequence to application: possibilities and complications
The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems.
The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons.
Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.
Resistance of Gram-positive bacteria to nisin is not determined by Lipid II levels
Lipid II is essential for nisin-mediated pore formation at nano-molar concentrations. We tested whether nisin resistance could result from different Lipid II levels, by comparing the maximal Lipid II pool in Micrococcus flavus (sensitive) and Listeria monocytogenes (relatively insensitive) and their nisin-resistant variants, with a newly developed method. No correlation was observed between the maximal Lipid II pool and nisin sensitivity, as was further corroborated by using spheroplasts of nisin-resistant and wild-type strains of M. flavus, which were equally sensitive to nisin. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved
AcmA of Lactococcus lactis is an N-acetylglucosaminidase with an optimal number of LysM domains for proper functioning
AcmA, the major autolysin of Lactococcus lactis MG1363 is a modular protein consisting of an N-terminal active site domain and a C-terminal peptidoglycan-binding domain. The active site domain is homologous to that of muramidase-2 of Enterococcus hirae, however, RP-HPLC analysis of muropeptides released from Bacillus subtilis peptidoglycan, after digestion with AcmA, shows that AcmA is an N-acetylglucosaminidase. In the C-terminus of AcmA three highly similar repeated regions of 45 amino acid residues are present, which are separated by short nonhomologous sequences. The repeats of AcmA, which belong to the lysine motif (LysM) domain family, were consecutively deleted, removed, or, alternatively, one additional repeat was added, without destroying the cell wall-hydrolyzing activity of the enzyme in vitro, although AcmA activity was reduced in all cases. In vivo, proteins containing no or only one repeat did not give rise to autolysis of lactococcal cells, whereas separation of the producer cells from the chains was incomplete. Exogenously added AcmA deletion derivatives carrying two repeats or four repeats bound to lactococcal cells, whereas the derivative with no or one repeat did not. In conclusion, these results show that AcmA needs three LysM domains for optimal peptidoglycan binding and biological functioning
Control of transcription elongation by GreA determines rate of gene expression in <em>Streptococcus pneumoniae</em>
Transcription by RNA polymerase may be interrupted by pauses caused by backtracking or misincorporation that can be resolved by the conserved bacterial Gre-factors. However, the consequences of such pausing in the living cell remain obscure. Here, we developed molecular biology and transcriptome sequencing tools in the human pathogen Streptococcus pneumoniae and provide evidence that transcription elongation is rate-limiting on highly expressed genes. Our results suggest that transcription elongation may be a highly regulated step of gene expression in S. pneumoniae. Regulation is accomplished via long-living elongation pauses and their resolution by elongation factor GreA. Interestingly, mathematical modeling indicates that long-living pauses cause queuing of RNA polymerases, which results in \u27transcription traffic jams\u27 on the gene and thus blocks its expression. Together, our results suggest that long-living pauses and RNA polymerase queues caused by them are a major problem on highly expressed genes and are detrimental for cell viability. The major and possibly sole function of GreA in S. pneumoniae is to prevent formation of backtracked elongation complexes
A generally applicable validation scheme for the assessment of factors involved in reproducibility and quality of DNA-microarray data
BACKGROUND: In research laboratories using DNA-microarrays, usually a number of researchers perform experiments, each generating possible sources of error. There is a need for a quick and robust method to assess data quality and sources of errors in DNA-microarray experiments. To this end, a novel and cost-effective validation scheme was devised, implemented, and employed. RESULTS: A number of validation experiments were performed on Lactococcus lactis IL1403 amplicon-based DNA-microarrays. Using the validation scheme and ANOVA, the factors contributing to the variance in normalized DNA-microarray data were estimated. Day-to-day as well as experimenter-dependent variances were shown to contribute strongly to the variance, while dye and culturing had a relatively modest contribution to the variance. CONCLUSION: Even in cases where 90 % of the data were kept for analysis and the experiments were performed under challenging conditions (e.g. on different days), the CV was at an acceptable 25 %. Clustering experiments showed that trends can be reliably detected also from genes with very low expression levels. The validation scheme thus allows determining conditions that could be improved to yield even higher DNA-microarray data quality
- …
