69 research outputs found

    Inducible expression of Pisum sativum xyloglucan fucosyltransferase in the pea root cap meristem, and effects of antisense mRNA expression on root cap cell wall structural integrity

    Get PDF
    Mitosis and cell wall synthesis in the legume root cap meristem can be induced and synchronized by the nondestructive removal of border cells from the cap periphery. Newly synthesized cells can be examined microscopically as they differentiate progressively during cap development, and ultimately detach as a new population of border cells. This system was used to demonstrate that Pisum sativum L. fucosyl transferase (PsFut1) mRNA expression is strongly expressed in root meristematic tissues, and is induced >2-fold during a 5-h period when mitosis in the root cap meristem is increased. Expression of PsFut1 antisense mRNA in pea hairy roots under the control of the CaMV35S promoter, which exhibits meristem localized expression in pea root caps, resulted in a 50–60% reduction in meristem localized endogenous PsFut1 mRNA expression measured using whole mount in situ hybridization. Changes in gross levels of cell wall fucosylated xyloglucan were not detected, but altered surface localization patterns were detected using whole mount immunolocalization with CCRC-M1, an antibody that recognizes fucosylated xyloglucan. Emerging hairy roots expressing antisense PsFut1 mRNA appeared normal macroscopically but scanning electron microscopy of tissues with altered CCRC-M1 localization patterns revealed wrinkled, collapsed cell surfaces. As individual border cells separated from the cap periphery, cell death occurred in correlation with extrusion of cellular contents through breaks in the wall

    In vitro

    No full text

    Visualization and VOF Modeling of Large Bubble Rising in Narrow Fixed Bed

    No full text

    Influence of intermittent hypoxic training on muscle energetics and exercise tolerance

    No full text
    Intermittent hypoxic training (IHT) is sometimes used by athletes to enhance nonhematological physiological adaptations to simulated altitude. We investigated whether IHT would result in greater improvements in muscle energetics and exercise tolerance compared with work-matched intermittent normoxic training (INT). Nine physically active men completed 3 wk of intensive, single-leg knee-extensor exercise training. Each training session consisted of 25 min of IHT (FiO2 14.5 ± 0.1%) with the experimental leg and 25 min of INT with the alternate leg, which served as a control. Before and after the training intervention, subjects completed a test protocol consisting of a bout of submaximal constant-work-rate exercise, a 24-s high-intensity exercise bout to quantify the phosphocreatine recovery time constant ([PCr]-τ), and an incremental test to the limit of tolerance. The tests were completed in normoxia and hypoxia in both INT and IHT legs. Muscle metabolism was assessed noninvasively using 31P-magnetic resonance spectroscopy. Improvements in the time-to-exhaustion during incremental exercise were not significantly different between training conditions either in normoxia (INT, 28 ± 20% vs. IHT, 25 ± 9%; P = 0.86) or hypoxia (INT, 21 ± 10% vs. IHT, 15 ± 11%; P = 0.29). In hypoxia, [PCr]-τ was speeded slightly but significantly more post-IHT compared with post-INT (−7.3 ± 2.9 s vs. −3.7 ± 1.7 s; P < 0.01), but changes in muscle metabolite concentrations during exercise were essentially not different between IHT and INT. Under the conditions of this investigation, IHT does not appreciably alter muscle metabolic responses or incremental exercise performance compared with INT
    corecore