180 research outputs found
Assessment of Demineralization Inhibition Effects of Dentin Desensitizers Using Swept-Source Optical Coherence Tomography
The purpose of this study was to evaluate the mechanism of action and the inhibiting effects of two types of desensitizers against dentin demineralization using pre-demineralized hypersensitivity tooth model in vitro. In this study, we confirmed that a hypersensitivity tooth model from our preliminary experiment could be prepared by immersing dentin discs in an acetic acid-based solution with pH 5.0 for three days. Dentin discs with three days of demineralization were prepared and applied by one of the desensitizers containing calcium fluoro-alumino-silicate glass (Nanoseal, NS) or fluoro-zinc-silicate glass (Caredyne Shield, CS), followed by an additional three days of demineralization. Dentin discs for three days of demineralization (de3) and six days of demineralization (de6) without the desensitizers were also prepared. The dentin discs after the experimental protocol were scanned using swept-source optical coherence tomography (SS-OCT) to image the cross-sectional (2D) view of the samples and evaluate the SS-OCT signal. The signal intensity profiles of SS-OCT from the region of interest of 300, 500, and 700 mu m in depth were obtained to calculate the integrated signal intensity and signal attenuation coefficient. The morphological differences and remaining chemical elements of the dentin discs were also analyzed using scanning electron microscopy and energy-dispersive X-ray spectroscopy. SS-OCT images of CS and NS groups showed no obvious differences between the groups. However, SS-OCT signal profiles for both the CS and NS groups showed smaller attenuation coefficients and larger integrated signal intensities than those of the de6 group. Reactional deposits of the desensitizers even after the additional three days of demineralization were observed on the dentin surface in NS group, whereas remnants containing Zn were detected within the dentinal tubules in CS group. Consequently, both CS and NS groups showed inhibition effects against the additional three days of demineralization in this study. Our findings demonstrate that SS-OCT signal analysis can be used to monitor the dentin demineralization and inhibition effects of desensitizers against dentin demineralization in vitro
Support effect of anode catalysts using an organic metal complex for fuel cells
The carbon support effect of Pt–Ni(mqph) electrocatalysts on the performance of CO tolerant anode catalysts for polymer electrolyte fuel cells (PEFCs) was investigated using carbon black and multi-walled carbon nanotubes (MWCNTs), with and without defect preparation. 20%Pt–Ni(mqph)/defect-free CNTs showed a very high CO tolerance (75% compared to the CO-free H2 case) under 100 ppm CO level in the half-cell system of the hydrogen oxidation reaction. On the other hand, the hydrogen oxidation current on Pt–Ni(mqph)/defective CNTs, Pt–Ni(mqph)/VulcanXC-72R and Pt–Ru/VulcanXC-72R significantly decreased with increasing concentration of CO up to 100 ppm (25–47% compared to the CO-free H2 case). It is thus considered that the carbon support materials strongly affect the CO tolerance of anode catalysts. This is ascribed to a change in the electronic structure of the Pt particles due to the interaction with the graphene surface, leading to a reduction in the adsorption energy of CO. Ni(mqph) also mitigates CO poisoning due to its ability of CO coordination on Ni metal center
Discrepancies between pathological examination and imaging analysis after primary systemic chemotherapy for breast cancer: report of two cases
Primary systemic chemotherapy (PSC) in breast cancer prolongs disease-free survival in patients who have obtained pathological complete remission (pCR). In combination with pathological examination, CT and MRI have been used to
evaluate the efficacy of PSC, they generally coincide well with pathological evaluation. We here present two cases showing discrepancies between pathological examination and imaging analysis after PSC in breast cancer. We should
keep such discrepancies in mind to determine the ideal treatment after PSC. An accurate method of evaluating cellular damage by PSC is needed
Duct lavage cytology for the detection of breast cancer: report of a case
Although many modalities have been established to diagnose breast cancers, it is sometimes difficult to reveal nonpalpable cases. Duct lavage cytology was originally established to reveal groups at high risk for breast cancers by detecting metaplastic ductal cells. We report here a case where duct lavage was useful for revealing a small cancer that had been undetected by repeated bloody nipple discharge and cytological examinations. Duct lavage cytology may be of use in cases where nipple discharge of unknown origin persists
Prediction Models for BMI and NAFLD
Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity. Disulfide bond‐forming oxidoreductase A‐like protein (DsbA‐L) is known to be a key molecule in protection against obesity and obesity‐induced inflammation. In the present study, we used a modeling and simulation approach in an attempt to develop body mass index (BMI) and BMI‐based NAFLD prediction models incorporating the DsbA‐L polymorphism to predict the BMI and NAFLD in 341 elderly subjects. A nonlinear mixed‐effect model best represented the sigmoidal relationship between the BMI and the logit function of the probability of NAFLD prevalence. The final models for BMI and NAFLD showed that DsbA‐L rs1917760 polymorphism, age, and gender were associated with the BMI, whereas gender, patatin‐like phospholipase 3 rs738409 polymorphism, HbA1c, and high‐density and low‐density lipoprotein cholesterol levels were associated with the risk of NAFLD. This information may aid in the genetic‐based prevention of obesity and NAFLD in the general elderly population
Localization of nonpalpable breast cancers using VATS marking system under ultrasonographic guidance
A preoperative tumor guiding system for nonpalpable breast cancer using a VATS guiding needle (Hakko Co., Ltd., Tokyo Japan) was reported. It was easy to introduce the guiding needle into breast cancers smaller than 1cm under
ultrasonographic observation. Neither bleeding nor infection was experienced. Wound management was easy and painless. This guiding system is very useful for locating and managing nonpalpable breast cancers even in outpatient
settings
Isoform D of vascular endothelial growth factor in systemic capillary leak syndrome : a case report
Background: Systemic capillary leak syndrome is a rare condition characterized by episodic attacks of hypovolemia due to systemic capillary hyperpermeability, which results in profound hypotension and edema. Although the implication of vascular endothelial growth factor, angiopoietin-2, and C-X-C motif chemokine 10 has been suggested, the pathogenesis of systemic capillary leak syndrome remains unclear. In this report, we describe a case of systemic capillary leak syndrome in which serum isoform D of vascular endothelial growth factor was elevated. To the best of our knowledge, this is the first reported case of systemic capillary leak syndrome in which isoform D of vascular endothelial growth factor is suggested as the plausible biomarker.
Case presentation: A 41-year-old Japanese man was transferred to our emergency department. He was hypotensive, tachycardic, and edematous over the trunk and all four limbs. He received aggressive intravenous fluid therapy and underwent fasciotomy of the right forearm to prevent muscle necrosis. A diagnosis of systemic capillary leak syndrome was suspected. The presence of serum monoclonal immunoglobulin G and κ light chain supported this diagnosis. Prevention of hypotensive crises was unsuccessfully attempted with theophylline, intravenous immunoglobulin, high-dose dexamethasone, bortezomib, melphalan, and prednisolone; however, the patient’s attacks dramatically disappeared after the introduction of thalidomide. The serum of the patient was stored soon after the onset of hypotensive crisis and analyzed to profile possible mediators responsible for the capillary leak. The concentration of vascular endothelial growth factor, angiopoietin-2, and C-X-C motif chemokine 10 were all within normal ranges. Meanwhile, we found that isoform D of vascular endothelial growth factor was elevated, which was normalized after the introduction of thalidomide.
Conclusions: In our patient, isoform D of vascular endothelial growth factor (instead of vascular endothelial growth factor) may have been a causative factor of hypotensive crises, since isoform D contributes to vascular endothelial growth factor receptor-2 signaling, which is the major mediator of the permeability-enhancing effects of vascular endothelial growth factor. We suggest the measurement of isoform D of vascular endothelial growth factor in patients with systemic capillary leak syndrome in whose serum vascular endothelial growth factor is not elevated
PRMT1 Deficiency in Mouse Juvenile Heart Induces Dilated Cardiomyopathy and Reveals Cryptic Alternative Splicing Products
Protein arginine methyltransferase 1 (PRMT1) catalyzes the asymmetric dimethylation of arginine residues in proteins and methylation of various RNA-binding proteins and is associated with alternative splicing in vitro. Although PRMT1 has essential in vivo roles in embryonic development, CNS development, and skeletal muscle regeneration, the functional importance of PRMT1 in the heart remains to be elucidated. Here, we report that juvenile cardiomyocyte-specific PRMT1-deficient mice develop severe dilated cardiomyopathy and exhibit aberrant cardiac alternative splicing. Furthermore, we identified previously undefined cardiac alternative splicing isoforms of four genes (Asb2, Fbxo40, Nrap, and Eif4a2) in PRMT1-cKO mice and revealed that eIF4A2 protein isoforms translated from alternatively spliced mRNA were differentially ubiquitinated and degraded by the ubiquitin-proteasome system. These findings highlight the essential roles of PRMT1 in cardiac homeostasis and alternative splicing regulation
Identification of a tomato UDP-arabinosyltransferase for airborne volatile reception
植物間コミュニケーションの仕組みを解明 --受容した香りを防御物質に変える遺伝子発見--. 京都大学プレスリリース. 2023-02-28.Volatiles from herbivore-infested plants function as a chemical warning of future herbivory for neighboring plants. (Z)-3-Hexenol emitted from tomato plants infested by common cutworms is taken up by uninfested plants and converted to (Z)-3-hexenyl β-vicianoside (HexVic). Here we show that a wild tomato species (Solanum pennellii) shows limited HexVic accumulation compared to a domesticated tomato species (Solanum lycopersicum) after (Z)-3-hexenol exposure. Common cutworms grow better on an introgression line containing an S. pennellii chromosome 11 segment that impairs HexVic accumulation, suggesting that (Z)-3-hexenol diglycosylation is involved in the defense of tomato against herbivory. We finally reveal that HexVic accumulation is genetically associated with a uridine diphosphate-glycosyltransferase (UGT) gene cluster that harbors UGT91R1 on chromosome 11. Biochemical and transgenic analyses of UGT91R1 show that it preferentially catalyzes (Z)-3-hexenyl β-D-glucopyranoside arabinosylation to produce HexVic in planta
- …