10 research outputs found

    Target Deletion of the Cytoskeleton-Associated Protein Palladin Does Not Impair Neurite Outgrowth in Mice

    Get PDF
    Palladin is an actin cytoskeleton–associated protein which is crucial for cell morphogenesis and motility. Previous studies have shown that palladin is localized to the axonal growth cone in neurons and may play an important role in axonal extension. Previously, we have generated palladin knockout mice which display cranial neural tube closure defect and embryonic lethality before embryonic day 15.5 (E15.5). To further study the role of palladin in the developing nervous system, we examined the innervation of palladin-deficient mouse embryos since the 200 kd, 140 kd, 90–92 kd and 50 kd palladin isoforms were undetectable in the mutant mouse embryo brain. Contrary to the results of previous studies, we found no inhibition of the axonal extension in palladin-deficient mouse embryos. The cortical neurons derived from palladin-deficient mice also showed no significant difference in neurite outgrowth as compared with those from wild-type mice. Moreover, no difference was found in neurite outgrowth of neural stem cell derived-neurons between palladin-deficient mice and wild-type mice. In conclusion, these results suggest that palladin is dispensable for normal neurite outgrowth in mice

    Role of Palladin Phosphorylation by Extracellular Signal-Regulated Kinase in Cell Migration

    Get PDF
    Phosphorylation of actin-binding proteins plays a pivotal role in the remodeling of the actin cytoskeleton to regulate cell migration. Palladin is an actin-binding protein that is phosphorylated by growth factor stimulation; however, the identity of the involved protein kinases remains elusive. In this study, we report that palladin is a novel substrate of extracellular signal-regulated kinase (ERK). Suppression of ERK activation by a chemical inhibitor reduced palladin phosphorylation, and expression of active MEK alone was sufficient for phosphorylation. In addition, an in vitro kinase assay demonstrated direct palladin phosphorylation by ERK. We found that Ser77 and Ser197 are essential residues for phosphorylation. Although the phosphorylation of these residues was not required for actin cytoskeletal organization, we found that expression of non-phosphorylated palladin enhanced cell migration. Finally, we show that phosphorylation inhibits the palladin association with Abl tyrosine kinase. Taken together, our results indicate that palladin phosphorylation by ERK has an anti-migratory function, possibly by modulating interactions with molecules that regulate cell migration

    Palladin is Upregulated in Kidney Disease and Contributes to Epithelial Cell Migration After Injury

    Get PDF
    Recovery from acute kidney injury involving tubular epithelial cells requires proliferation and migration of healthy cells to the area of injury. In this study, we show that palladin, a previously characterized cytoskeletal protein, is upregulated in injured tubules and suggest that one of its functions during repair is to facilitate migration of remaining cells to the affected site. In a mouse model of anti-neutrophilic cytoplasmic antibody involving both tubular and glomerular disease, palladin is upregulated in injured tubular cells, crescents and capillary cells with angiitis. In human biopsies of kidneys from patients with other kidney diseases, palladin is also upregulated in crescents and injured tubules. In LLC-PK1 cells, a porcine proximal tubule cell line, stress induced by transforming growth factor-Ξ²1 (TGF-Ξ²1) leads to palladin upregulation. Knockdown of palladin in LLC-PK1 does not disrupt cell morphology but does lead to a defect in cell migration. Furthermore, TGF-Ξ²1 induced increase in the 75β€…kDa palladin isoform occurs in both the nucleus and the cytoplasm. These data suggest that palladin expression is induced in injured cells and contributes to proper migration of cells in proximal tubules, possibly by regulation of gene expression as part of the healing process after acute injury

    The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts

    Get PDF
    Cells organize actin filaments into higher-order structures by regulating the composition, distribution and concentration of actin crosslinkers. Palladin is an actin crosslinker found in the lamellar actin network and stress fibers, which are critical for mechanosensing of the environment. Palladin also serves as a molecular scaffold for Ξ±-actinin, another key actin crosslinker. By virtue of its close interactions with actomyosin structures in the cell, palladin may play an important role in cell mechanics. However, the role of palladin in cellular force generation and mechanosensing has not been studied. Here, we investigate the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. Traction force microscopy revealed that tumor-associated fibroblasts generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells and inhibited their ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in actin organization, adhesion dynamics and altered myosin organization in palladin knock-down cells. Our results suggest that actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis

    Myocardial remodeling after infarction: the role of myofibroblasts

    No full text
    Myofibroblasts have characteristics of fibroblasts and smooth muscle cells: they produce extracellular matrix and are able to contract. In so doing, they can contribute to tissue replacement and interstitial fibrosis following cardiac injury. The scar formed after myocardial injury is no longer considered to be passive tissue; it is an active playground where myofibroblasts play a role in collagen turnover and scar contraction. Maintaining the extracellular matrix in the scar is essential and can prevent dilatation of the infarct area leading to heart failure. On the other hand, extracellular matrix deposition at sites remote from the infarct area can lead to cardiac stiffness, an inevitable process of myocardial remodeling that occurs in the aftermath of myocardial infarction and constitutes the basis of the development of heart failure. Defining molecular targets on myofibroblasts in conjunction with establishing the feasibility of molecular imaging of these cells might facilitate the early detection and treatment of patients who are at risk of developing heart failure after myocardial infarction
    corecore