4 research outputs found

    Visualization of the intracavitary blood flow in systemic ventricles of Fontan patients by contrast echocardiography using particle image velocimetry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flow patterns in univentricular hearts may have clinical value. Therefore, it is our objective to asses and characterize vortex flow patterns with Fontan circulation in comparison with healthy controls.</p> <p>Methods</p> <p>Twenty-three patients (8 Fontan and 15 normal patients) underwent echocardiography with intravenous contrast agent (Sonovue<sup>®</sup>) administration. Dedicated software was used to perform particle image velocimetry (PIV) and to visualize intracavitary flow in the systemic ventricles of the patients. Vortex parameters including vortex depth, length, width, and sphericity index were measured. Vortex pulsatility parameters including relative strength, vortex relative strength, and vortex pulsation correlation were also measured.</p> <p>Results</p> <p>The data from this study show that it is feasible to perform particle velocimetry in Fontan patients. Vortex length (VL) was significantly lower (0.51 ± 0.09 vs 0.65 ± 0.12, <it>P </it>= 0.010) and vortex width (VW) (0.32 ± 0.06 vs 0.27 ± 0.04, <it>p </it>= 0.014), vortex pulsation correlation (VPC) (0.26 ± 0.25 vs -0.22 ± 0.87, <it>p </it>= 0.05) were significantly higher in Fontan patients. Sphericity index (SI) (1.66 ± 0.48 vs 2.42 ± 0.62, <it>p </it>= 0.005), relative strength (RS) (0.77 ± 0.33 vs 1.90 ± 0.47, <it>p </it>= 0.0001), vortex relative strength (VRS) (0.18 ± 0.13 vs 0.43 ± 0.14, <it>p </it>= 0.0001) were significantly lower in the Fontan patients group.</p> <p>Conclusions</p> <p>PIV using contrast echocardiography is feasible in Fontan patients. Fontan patients had aberrant flow patterns as compared to normal hearts in terms of position, shape and sphericity of the main vortices. The vortex from the Fontan group was consistently shorter, wider and rounder than in controls. Whether vortex characteristics are related with clinical outcome is subject to further investigation.</p

    Elastic guided waves in a layered plate with rectangular cross section

    No full text
    Guided waves in a layered elastic plate of rectangular cross section (finite width and thickness) has been studied in this paper. A semianalytical finite element method in which the deformation of the cross section is modeled by two-dimensional finite elements and analytical representation of propagating waves along the length of the plate has been used. The method is applicable to arbitrary number of layers and general anisotropic material properties of each layer, and is similar to the stiffness method used earlier to study guided waves in a laminated composite plate of infinite width. Numerical results showing the effect of varying the width of the plate on the dispersion of guided waves are presented and are compared with those for an infinite plate. In addition, effect of thin anisotropic coating or interface layers on the guided waves is investigated. (C) 2002

    In-Plane Vibration Response of Piezoelectrically Actuated Membranes

    No full text
    corecore