41,719 research outputs found

    Analytical results for long time behavior in anomalous diffusion

    Full text link
    We investigate through a Generalized Langevin formalism the phenomenon of anomalous diffusion for asymptotic times, and we generalized the concept of the diffusion exponent. A method is proposed to obtain the diffusion coefficient analytically through the introduction of a time scaling factor λ\lambda. We obtain as well an exact expression for λ\lambda for all kinds of diffusion. Moreover, we show that λ\lambda is a universal parameter determined by the diffusion exponent. The results are then compared with numerical calculations and very good agreement is observed. The method is general and may be applied to many types of stochastic problem

    Newtonian View of General Relativistic Stars

    Get PDF
    Although general relativistic cosmological solutions, even in the presence of pressure, can be mimicked by using neo-Newtonian hydrodynamics, it is not clear whether there exists the same Newtonian correspondence for spherical static configurations. General relativity solutions for stars are known as the Tolman-Oppenheimer-Volkoff (TOV) equations. On the other hand, the Newtonian description does not take into account the total pressure effects and therefore can not be used in strong field regimes. We discuss how to incorporate pressure in the stellar equilibrium equations within the neo-Newtonian framework. We compare the Newtonian, neo-Newtonian and the full relativistic theory by solving the equilibrium equations for both three approaches and calculating the mass-radius diagrams for some simple neutron stars equation of state.Comment: 6 pages, 3 figures. v2 matches accepted version (EPJC

    Estimativa de custo de produção da cultura de café de média a alta tecnologia, Ouro Preto do Oeste, RO, 2007.

    Get PDF
    Este trabalho objetivou determinar o desempenho econômico do cultivo de café robusta em condições de média a alta tecnologia no Município de Ouro Preto do Oeste.bitstream/CPAF-RO-2010/14545/1/342-cafe.pd

    Monte Carlo Simulations of Some Dynamical Aspects of Drop Formation

    Full text link
    In this work we present some results from computer simulations of dynamical aspects of drop formation in a leaky faucet. Our results, which agree very well with the experiments, suggest that only a few elements, at the microscopic level, would be necessary to describe the most important features of the system. We were able to set all parameters of the model in terms of real ones. This is an additional advantage with respect to previous theoretical works.Comment: 7 pages (Latex), 6 figures (PS) Accepted to publication in Int. J. Mod. Phys. C Source Codes at http://www.if.uff.br/~arlim

    Irreversible spherical model and its stationary entropy production rate

    Full text link
    The nonequilibrium stationary state of an irreversible spherical model is investigated on hypercubic lattices. The model is defined by Langevin equations similar to the reversible case, but with asymmetric transition rates. In spite of being irreversible, we have succeeded in finding an explicit form for the stationary probability distribution, which turns out to be of the Boltzmann-Gibbs type. This enables one to evaluate the exact form of the entropy production rate at the stationary state, which is non-zero if the dynamical rules of the transition rates are asymmetric

    Study of the Fully Frustrated Clock Model using the Wang-Landau Algorithm

    Full text link
    Monte Carlo simulations using the newly proposed Wang-Landau algorithm together with the broad histogram relation are performed to study the antiferromagnetic six-state clock model on the triangular lattice, which is fully frustrated. We confirm the existence of the magnetic ordering belonging to the Kosterlitz-Thouless (KT) type phase transition followed by the chiral ordering which occurs at slightly higher temperature. We also observe the lower temperature phase transition of KT type due to the discrete symmetry of the clock model. By using finite-size scaling analysis, the higher KT temperature T2T_2 and the chiral critical temperature TcT_c are respectively estimated as T2=0.5154(8)T_2=0.5154(8) and Tc=0.5194(4)T_c=0.5194(4). The results are in favor of the double transition scenario. The lower KT temperature is estimated as T1=0.496(2)T_1=0.496(2). Two decay exponents of KT transitions corresponding to higher and lower temperatures are respectively estimated as η2=0.25(1)\eta_2=0.25(1) and η1=0.13(1)\eta_1=0.13(1), which suggests that the exponents associated with the KT transitions are universal even for the frustrated model.Comment: 7 pages including 9 eps figures, RevTeX, to appear in J. Phys.
    • …
    corecore