30,611 research outputs found

    Phase transitions in dependence of apex predator decaying ratio in a cyclic dominant system

    Full text link
    Cyclic dominant systems, like rock-paper-scissors game, are frequently used to explain biodiversity in nature, where mobility, reproduction and intransitive competition are on stage to provide the coexistence of competitors. A significantly new situation emerges if we introduce an apex predator who can superior all members of the mentioned three-species system. In the latter case the evolution may terminate into three qualitatively different destinations depending on the apex predator decaying ratio qq. In particular, the whole population goes extinct or all four species survive or only the original three-species system remains alive as we vary the control parameter. These solutions are separated by a discontinuous and a continuous phase transitions at critical qq values. Our results highlight that cyclic dominant competition can offer a stable way to survive even in a predator-prey-like system that can be maintained for large interval of critical parameter values.Comment: version to appear in EPL. 7 pages, 7 figure

    Invasion controlled pattern formation in a generalized multi-species predator-prey system

    Full text link
    Rock-scissors-paper game, as the simplest model of intransitive relation between competing agents, is a frequently quoted model to explain the stable diversity of competitors in the race of surviving. When increasing the number of competitors we may face a novel situation because beside the mentioned unidirectional predator-prey-like dominance a balanced or peer relation can emerge between some competitors. By utilizing this possibility in the present work we generalize a four-state predator-prey type model where we establish two groups of species labeled by even and odd numbers. In particular, we introduce different invasion probabilities between and within these groups, which results in a tunable intensity of bidirectional invasion among peer species. Our study reveals an exceptional richness of pattern formations where five quantitatively different phases are observed by varying solely the strength of the mentioned inner invasion. The related transition points can be identified with the help of appropriate order parameters based on the spatial autocorrelation decay, on the fraction of empty sites, and on the variance of the species density. Furthermore, the application of diverse, alliance-specific inner invasion rates for different groups may result in the extinction of the pair of species where this inner invasion is moderate. These observations highlight that beyond the well-known and intensively studied cyclic dominance there is an additional source of complexity of pattern formation that has not been explored earlier.Comment: 8 pages, 8 figures. To appear in PR

    Scaling Invariance in a Time-Dependent Elliptical Billiard

    Full text link
    We study some dynamical properties of a classical time-dependent elliptical billiard. We consider periodically moving boundary and collisions between the particle and the boundary are assumed to be elastic. Our results confirm that although the static elliptical billiard is an integrable system, after to introduce time-dependent perturbation on the boundary the unlimited energy growth is observed. The behaviour of the average velocity is described using scaling arguments

    Hamming distance and mobility behavior in generalized rock-paper-scissors models

    Full text link
    This work reports on two related investigations of stochastic simulations which are widely used to study biodiversity and other related issues. We first deal with the behavior of the Hamming distance under the increase of the number of species and the size of the lattice, and then investigate how the mobility of the species contributes to jeopardize biodiversity. The investigations are based on the standard rules of reproduction, mobility and predation or competition, which are described by specific rules, guided by generalization of the rock-paper-scissors game, valid in the case of three species. The results on the Hamming distance indicate that it engenders universal behavior, independently of the number of species and the size of the square lattice. The results on the mobility confirm the prediction that it may destroy diversity, if it is increased to higher and higher values.Comment: 7 pages, 9 figures. To appear in EP

    Spatial patterns and biodiversity in off-lattice simulations of a cyclic three-species Lotka-Volterra model

    Full text link
    Stochastic simulations of cyclic three-species spatial predator-prey models are usually performed in square lattices with nearest neighbor interactions starting from random initial conditions. In this Letter we describe the results of off-lattice Lotka-Volterra stochastic simulations, showing that the emergence of spiral patterns does occur for sufficiently high values of the (conserved) total density of individuals. We also investigate the dynamics in our simulations, finding an empirical relation characterizing the dependence of the characteristic peak frequency and amplitude on the total density. Finally, we study the impact of the total density on the extinction probability, showing how a low population density may jeopardize biodiversity.Comment: 5 pages, 7 figures; new version, with new title and figure
    • …
    corecore