48,961 research outputs found

    Synchronization in the presence of memory

    Full text link
    We study the effect of memory on synchronization of identical chaotic systems driven by common external noises. Our examples show that while in general synchronization transition becomes more difficult to meet when memory range increases, for intermediate ranges the synchronization tendency of systems can be enhanced. Generally the synchronization transition is found to depend on the memory range and the ratio of noise strength to memory amplitude, which indicates on a possibility of optimizing synchronization by memory. We also point out on a close link between dynamics with memory and noise, and recently discovered synchronizing properties of networks with delayed interactions

    How hole defects modify vortex dynamics in ferromagnetic nanodisks

    Full text link
    Defects introduced in ferromagnetic nanodisks may deeply affect the structure and dynamics of stable vortex-like magnetization. Here, analytical techniques are used for studying, among other dynamical aspects, how a small cylindrical cavity modify the oscillatory modes of the vortex. For instance, we have realized that if the vortex is nucleated out from the hole its gyrotropic frequencies are shifted below. Modifications become even more pronounced when the vortex core is partially or completely captured by the hole. In these cases, the gyrovector can be partially or completely suppressed, so that the associated frequencies increase considerably, say, from some times to several powers. Possible relevance of our results for understanding other aspects of vortex dynamics in the presence of cavities and/or structural defects are also discussed.Comment: 9 pages, 4 page

    Finite-size effects in roughness distribution scaling

    Full text link
    We study numerically finite-size corrections in scaling relations for roughness distributions of various interface growth models. The most common relation, which considers the average roughness asscalingfactor,isnotobeyedinthesteadystatesofagroupofballistic−likemodelsin2+1dimensions,evenwhenverylargesystemsizesareconsidered.Ontheotherhand,goodcollapseofthesamedataisobtainedwithascalingrelationthatinvolvestherootmeansquarefluctuationoftheroughness,whichcanbeexplainedbyfinite−sizeeffectsonsecondmomentsofthescalingfunctions.Wealsoobtaindatacollapsewithanalternativescalingrelationthataccountsfortheeffectoftheintrinsicwidth,whichisaconstantcorrectiontermpreviouslyproposedforthescalingof as scaling factor, is not obeyed in the steady states of a group of ballistic-like models in 2+1 dimensions, even when very large system sizes are considered. On the other hand, good collapse of the same data is obtained with a scaling relation that involves the root mean square fluctuation of the roughness, which can be explained by finite-size effects on second moments of the scaling functions. We also obtain data collapse with an alternative scaling relation that accounts for the effect of the intrinsic width, which is a constant correction term previously proposed for the scaling of . This illustrates how finite-size corrections can be obtained from roughness distributions scaling. However, we discard the usual interpretation that the intrinsic width is a consequence of high surface steps by analyzing data of restricted solid-on-solid models with various maximal height differences between neighboring columns. We also observe that large finite-size corrections in the roughness distributions are usually accompanied by huge corrections in height distributions and average local slopes, as well as in estimates of scaling exponents. The molecular-beam epitaxy model of Das Sarma and Tamborenea in 1+1 dimensions is a case example in which none of the proposed scaling relations works properly, while the other measured quantities do not converge to the expected asymptotic values. Thus, although roughness distributions are clearly better than other quantities to determine the universality class of a growing system, it is not the final solution for this task.Comment: 25 pages, including 9 figures and 1 tabl

    Temperature effect on (2+1) experimental Kardar-Parisi-Zhang growth

    Full text link
    We report on the effect of substrate temperature (T) on both local structure and long-wavelength fluctuations of polycrystalline CdTe thin films deposited on Si(001). A strong T-dependent mound evolution is observed and explained in terms of the energy barrier to inter-grain diffusion at grain boundaries, as corroborated by Monte Carlo simulations. This leads to transitions from uncorrelated growth to a crossover from random-to-correlated growth and transient anomalous scaling as T increases. Due to these finite-time effects, we were not able to determine the universality class of the system through the critical exponents. Nevertheless, we demonstrate that this can be circumvented by analyzing height, roughness and maximal height distributions, which allow us to prove that CdTe grows asymptotically according to the Kardar-Parisi-Zhang (KPZ) equation in a broad range of T. More important, one finds positive (negative) velocity excess in the growth at low (high) T, indicating that it is possible to control the KPZ non-linearity by adjusting the temperature.Comment: 6 pages, 5 figure
    • …
    corecore