42,609 research outputs found

    Phase transitions in dependence of apex predator decaying ratio in a cyclic dominant system

    Full text link
    Cyclic dominant systems, like rock-paper-scissors game, are frequently used to explain biodiversity in nature, where mobility, reproduction and intransitive competition are on stage to provide the coexistence of competitors. A significantly new situation emerges if we introduce an apex predator who can superior all members of the mentioned three-species system. In the latter case the evolution may terminate into three qualitatively different destinations depending on the apex predator decaying ratio qq. In particular, the whole population goes extinct or all four species survive or only the original three-species system remains alive as we vary the control parameter. These solutions are separated by a discontinuous and a continuous phase transitions at critical qq values. Our results highlight that cyclic dominant competition can offer a stable way to survive even in a predator-prey-like system that can be maintained for large interval of critical parameter values.Comment: version to appear in EPL. 7 pages, 7 figure

    Towards a knowledge-based system to assist the Brazilian data-collecting system operation

    Get PDF
    A study is reported which was carried out to show how a knowledge-based approach would lead to a flexible tool to assist the operation task in a satellite-based environmental data collection system. Some characteristics of a hypothesized system comprised of a satellite and a network of Interrogable Data Collecting Platforms (IDCPs) are pointed out. The Knowledge-Based Planning Assistant System (KBPAS) and some aspects about how knowledge is organized in the IDCP's domain are briefly described
    corecore