37,021 research outputs found

    An alternative theoretical approach to describe planetary systems through a Schrodinger-type diffusion equation

    Full text link
    In the present work we show that planetary mean distances can be calculated with the help of a Schrodinger-type diffusion equation. The obtained results are shown to agree with the observed orbits of all the planets and of the asteroid belt in the solar system, with only three empty states. Furthermore, the equation solutions predict a fundamental orbit at 0.05 AU from solar-type stars, a result confirmed by recent discoveries. In contrast to other similar approaches previously presented in the literature, we take into account the flatness of the solar system, by considering the flat solutions of the Schrodinger-type equation. The model has just one input parameter, given by the mean distance of Mercury.Comment: 6 pages. Version accepted for publication in Chaos, Solitons & Fractal

    Optimization of hierarchical structures of information flow

    Get PDF
    The efficiency of a large hierarchical organisation is simulated on Barabasi-Albert networks, when each needed link leads to a loss of information. The optimum is found at a finite network size, corresponding to about five hierarchical layers, provided a cost for building the network is included in our optimization.Comment: Draft of 6 pages including all figure

    Physical properties of the Schur complement of local covariance matrices

    Get PDF
    General properties of global covariance matrices representing bipartite Gaussian states can be decomposed into properties of local covariance matrices and their Schur complements. We demonstrate that given a bipartite Gaussian state ρ12\rho_{12} described by a 4×44\times 4 covariance matrix \textbf{V}, the Schur complement of a local covariance submatrix V1\textbf{V}_1 of it can be interpreted as a new covariance matrix representing a Gaussian operator of party 1 conditioned to local parity measurements on party 2. The connection with a partial parity measurement over a bipartite quantum state and the determination of the reduced Wigner function is given and an operational process of parity measurement is developed. Generalization of this procedure to a nn-partite Gaussian state is given and it is demonstrated that the n1n-1 system state conditioned to a partial parity projection is given by a covariance matrix such as its 2×22 \times 2 block elements are Schur complements of special local matrices.Comment: 10 pages. Replaced with final published versio
    corecore