37 research outputs found

    Educational technologies as a means of developing students' independence

    Get PDF
    The current stage of development of society is characterized by the development of scientific and technological progress, the emergence of various innovative processes that affect the course of development of all spheres of life, including higher education. With the emergence of a competency-based approach and a corresponding change in educational goals, higher education institutions, fulfilling the requirements of the Federal state educational standards, should use innovative educational technologies in the preparation of students to form their professional competence. The purpose of the article is to consider the experience of implementing educational technologies as a tool for developing students' independence. The independence of the student is an integral part of the development of his competence. The article presents an examination of the concepts of “independence” and “educational technology” from various points of view. The dependence of independence on the use of innovative educational technologies in the educational process is traced. The stages of the process of organizing students' independent work using innovative educational technologies are highlighted. The presented study on identifying students' level of independence when studying the discipline “Teaching Technologies of the Teachers of the Past” allows us to conclude that students are more successful with the active implementation of educational technologies, since they make the process more active and creative, make the interaction process more efficient. The study was conducted over two years (in 2018 and 2019). We checked the level of independence of students before the introduction of innovative technologies in the study of the discipline "Technology of teaching teachers of the past" and after. The more often educational technologies are used in the educational process, the more students get used to independent work, the better it becomes. The use of educational technologies allows the formation of a highly educated competent specialist who independently and creatively solves professional problems

    Characterization of cerebral blood flow dynamics with multiscale entropy

    Get PDF
    Based on the laser speckle contrast imaging (LSCI) and the multiscale entropy (MSE), we study in this work the blood flow dynamics at the levels of cerebral veins and the surrounding network of microcerebral vessels. We discuss how the phenylephrine-related acute peripheral hypertension is reflected in the cerebral circulation and show that the observed changes are scale-dependent, and they are significantly more pronounced in microcerebral vessels, while the macrocerebral dynamics does not demonstrate authentic inter-group distinctions. We also consider the permeability of blood–brain barrier (BBB) and study its opening caused by sound exposure. We show that alterations associated with the BBB opening can be revealed by the analysis of blood flow at the level of macrocerebral vessels

    A first estimate of triply heavy baryon masses from the pNRQCD perturbative static potential

    Get PDF
    Within pNRQCD we compute the masses of spin-averaged triply heavy baryons using the now-available NNLO pNRQCD potentials and three-body variational approach. We focus in particular on the role of the purely three-body interaction in perturbation theory. This we find to be reasonably small and of the order 25 MeV Our prediction for the Omega_ccc baryon mass is 4900(250) in keeping with other approaches. We propose to search for this hitherto unobserved state at B factories by examining the end point of the recoil spectrum against triple charm.Comment: 18 figures, 21 page

    An Inducible and Reversible Mouse Genetic Rescue System

    Get PDF
    Inducible and reversible regulation of gene expression is a powerful approach for uncovering gene function. We have established a general method to efficiently produce reversible and inducible gene knockout and rescue in mice. In this system, which we named iKO, the target gene can be turned on and off at will by treating the mice with doxycycline. This method combines two genetically modified mouse lines: a) a KO line with a tetracycline-dependent transactivator replacing the endogenous target gene, and b) a line with a tetracycline-inducible cDNA of the target gene inserted into a tightly regulated (TIGRE) genomic locus, which provides for low basal expression and high inducibility. Such a locus occurs infrequently in the genome and we have developed a method to easily introduce genes into the TIGRE site of mouse embryonic stem (ES) cells by recombinase-mediated insertion. Both KO and TIGRE lines have been engineered for high-throughput, large-scale and cost-effective production of iKO mice. As a proof of concept, we have created iKO mice in the apolipoprotein E (ApoE) gene, which allows for sensitive and quantitative phenotypic analyses. The results demonstrated reversible switching of ApoE transcription, plasma cholesterol levels, and atherosclerosis progression and regression. The iKO system shows stringent regulation and is a versatile genetic system that can easily incorporate other techniques and adapt to a wide range of applications

    Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry

    Get PDF
    Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase

    Determining the largest Lyapunov exponent of chaotic dynamics from sequences of interspike intervals contaminated by noise

    No full text
    We discuss abilities of quantifying low-dimensional chaotic oscillations at the input of two threshold models from the output sequences of interspike intervals in the presence of noise. We propose a modification of the standard approach for computing the largest Lyapunov exponent from a time series that verifies the performed estimations for noisy data. We consider features of its application to different types of point processes

    ANALYSIS OF DOMESTIC AND INTERNATIONAL APPROACHES TO THE ADVANCED EDUCATIONAL PRACTICES IN THE ELECTRONIC NETWORK ENVIRONMENT

    No full text
    Introduction: human activities related to the use of information are being transformed under the influence of computer technology. Variable solutions to information problems are emerging; demands and require¬ments for the competence are changing on the labour market. Educational practices are destined to form a new learning behaviour for the 21st century, adopting lifelong learning strategy. The main purpose of the article is to answer the question as to how to transform existing pedagogical theory and practice under current conditions of electronic environment. Publishing of this article is coherent with concept of the journal Integration of Education, analyzing Russian and world experience in the development of education systems. This approach is important for dissemination and implementation in practice. This article explores the challenges of information technology and technical support of the educational process in universities and schools. The study of these issues is in the field of view of the journa l. Materials and Methods: the paper elaborates on the results of domestic and international educational theory and practice, comparison methods, drawing on student’s survey in the framework of international research in the field of e-learning in higher education institutions. Results: the main approaches, applied to the formulation of educational practices in the electronic environ-ment, were analyzed. The most topical national approaches include system, activity, polysubject (dialogical), context, and dialogical ones. Among international approaches self-directed learning, educational communication strategies, experiential learning, training in partnership, collaborative learning, learning in online communities, situational training were analyzed. Specifics of electronic educational interactions with distributed in time and space activities of teachers and students, create the preconditions for the implementation of new educational practices. Educational practices should respond to the rapidly changing labour market request and information behaviour of the “digital” generation. Discussion and Conclusions: educational practices in the digital environment should be subject-centered, with a high degree of interaction, cooperation and teamwork. They should be updated in cognitive, moti-vational and regulatory aspects, in order to enrich the activities of learners through the expansion of the educational objectives range and time-space boundaries. Such educational practices are an important part of the conscious self-development process

    Effects of Sleep Deprivation on the Brain Electrical Activity in Mice

    No full text
    Sleep plays a crucial role in maintaining brain health. Insufficient sleep leads to an enhanced permeability of the blood–brain barrier and the development of diseases of small cerebral vessels. In this study, we discuss the possibility of detecting changes in the electrical activity of the brain associated with sleep deficit, using an extended detrended fluctuation analysis (EDFA). We apply this approach to electroencephalograms (EEG) in mice to identify signs of changes that can be caused by short-term sleep deprivation (SD). Although the SD effect is usually subject-dependent, analysis of a group of animals shows the appearance of a pronounced decrease in EDFA scaling exponents, describing power-law correlations and the impact of nonstationarity as a fairly typical response. Using EDFA, we revealed an SD effect in 9 out of 10 mice (Mann–Whitney test, p<0.05) that outperforms the DFA results (7 out of 10 mice). This tool may be a promising method for quantifying SD-induced pathological changes in the brain

    Microorganisms of Lake Baikal : the deepest and most ancient lake on Earth

    No full text
    Lake Baikal (Russia) is the largest (by volume) and deepest lake on Earth. The lake remains relatively pristine due to the low population density around its basin. Being very distant from any marine water body but having a remarkable number of similarities to oceans (depth, oxygen content, oligotrophy) provides a unique model of pelagic microbiota that is submitted to marine-like conditions minus the salt content of the water. It is also a model of lakes located at high latitudes and submitted to yearly ice cover (from January to April). The analysis by different approaches has indeed provided a view of the microbiota of this lake. It contains novel microbes that are closely related to marine groups not known to be present in freshwater like Chloroflexi or Pelagibacter. The deep water mass contains large communities of chemolithotrophs that use ammonia generated in the photic zone or methane from the sediments

    Wavelet-analysis in application to studying spike separation and information encoding in neuron dynamics

    No full text
    We study how the noise statistics influences the performance of separation of extracellularly recorded spikes by principal component analysis and wavelet-based technique. We show that the two approaches have different robustness against the frequency band of the experimental noise and an appropriate filtering of the spike waveforms can significantly improve the results of separation. For the wavelet technique we suggest filter parameters optimizing spike separation. Finally we discuss a hypothesis that information encoding in neural dynamics may sometimes be considered in terms of frequency modulation
    corecore