85 research outputs found

    Fluid and solid phases of the Gaussian core model

    Full text link
    We study the structural and thermodynamic properties of a model of point particles interacting by means of a Gaussian pair potential first introduced by Stillinger [Stillinger F H 1976 J. Chem. Phys. 65, 3968]. By employing integral equation theories for the fluid state and comparing with Monte Carlo simulation results, we establish the limits of applicability of various common closures and examine the dependence of the correlation functions of the liquid on the density and temperature. We employ a simple, mean-field theory for the high density domain of the liquid and demonstrate that at infinite density the mean-field theory is exact and that the system reduces to an `infinite density ideal gas', where all correlations vanish and where the hypernetted chain (HNC) closure becomes exact. By employing an Einstein model for the solid phases, we subsequently calculate quantitatively the phase diagram of the model and find that the system possesses two solid phases, face centered cubic and body centered cubic, and also displays reentrant melting into a liquid at high densities. Moreover, the system remains fluid at all densities when the temperature exceeds 1% of the strength of the interactions.Comment: 22 pages, 10 figure

    Self diffusion in a system of interacting Langevin particles

    Full text link
    The behavior of the self diffusion constant of Langevin particles interacting via a pairwise interaction is considered. The diffusion constant is calculated approximately within a perturbation theory in the potential strength about the bare diffusion constant. It is shown how this expansion leads to a systematic double expansion in the inverse temperature β\beta and the particle density ρ\rho. The one-loop diagrams in this expansion can be summed exactly and we show that this result is exact in the limit of small β\beta and ρβ\rho\beta constant. The one-loop result can also be re-summed using a semi-phenomenological renormalization group method which has proved useful in the study of diffusion in random media. In certain cases the renormalization group calculation predicts the existence of a diverging relaxation time signalled by the vanishing of the diffusion constant -- possible forms of divergence coming from this approximation are discussed. Finally, at a more quantitative level, the results are compared with numerical simulations, in two-dimensions, of particles interacting via a soft potential recently used to model the interaction between coiled polymers.Comment: 12 pages, 8 figures .ep

    Exact Criterion for Determining Clustering vs. Reentrant Melting Behavior for Bounded Interaction Potentials

    Full text link
    We examine in full generality the phase behavior of systems whose constituent particles interact by means of potentials which do not diverge at the origin, are free of attractive parts and decay fast enough to zero as the interparticle separation r goes to infinity. By employing a mean field-density functional theory which is shown to become exact at high temperatures and/or densities, we establish a criterion which determines whether a given system will freeze at all temperatures or it will display reentrant melting and an upper freezing temperature.Comment: 5 pages, 3 figures, submitted to PRL on March 29, 2000 New version: 10 pages, 9 figures, forwarded to PRE on October 16, 200

    An integral equation approach to effective interactions between polymers in solution

    Full text link
    We use the thread model for linear chains of interacting monomers, and the ``polymer reference interaction site model'' (PRISM) formalism to determine the monomer-monomer pair correlation function hmm(r)h_{mm}(r) for dilute and semi-dilute polymer solutions, over a range of temperatures from very high (where the chains behave as self-avoiding walks) to below the θ\theta temperature, where phase separation sets in. An inversion procedure, based on the HNC integral equation, is used to extract the effective pair potential between ``average'' monomers on different chains. An accurate relation between hmm(r)h_{mm}(r), hcc(r)h_{cc}(r) [the pair correlation function between the polymer centers of mass (c.m.)], and the intramolecular form factors is then used to determine hcc(r)h_{cc}(r), and subsequently extract the effective c.m.-c.m. pair potential vcc(r)v_{cc}(r) by a similar inversion procedure. vcc(r)v_{cc}(r) depends on temperature and polymer concentration, and the predicted variations are in reasonable agreement with recent simulation data, except at very high temperatures, and below the θ\theta temperature.Comment: 13 pages, 13 figures, revtex ; revised versio

    Zur Kinetik der spontanen und der gestarteten radikalischen Polymerisation von o-Chlorstyrol

    No full text
    corecore