23 research outputs found

    Towards the clinical implementation of pharmacogenetics in bipolar disorder.

    Get PDF
    BackgroundBipolar disorder (BD) is a psychiatric illness defined by pathological alterations between the mood states of mania and depression, causing disability, imposing healthcare costs and elevating the risk of suicide. Although effective treatments for BD exist, variability in outcomes leads to a large number of treatment failures, typically followed by a trial and error process of medication switches that can take years. Pharmacogenetic testing (PGT), by tailoring drug choice to an individual, may personalize and expedite treatment so as to identify more rapidly medications well suited to individual BD patients.DiscussionA number of associations have been made in BD between medication response phenotypes and specific genetic markers. However, to date clinical adoption of PGT has been limited, often citing questions that must be answered before it can be widely utilized. These include: What are the requirements of supporting evidence? How large is a clinically relevant effect? What degree of specificity and sensitivity are required? Does a given marker influence decision making and have clinical utility? In many cases, the answers to these questions remain unknown, and ultimately, the question of whether PGT is valid and useful must be determined empirically. Towards this aim, we have reviewed the literature and selected drug-genotype associations with the strongest evidence for utility in BD.SummaryBased upon these findings, we propose a preliminary panel for use in PGT, and a method by which the results of a PGT panel can be integrated for clinical interpretation. Finally, we argue that based on the sufficiency of accumulated evidence, PGT implementation studies are now warranted. We propose and discuss the design for a randomized clinical trial to test the use of PGT in the treatment of BD

    Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence

    Get PDF
    About one-third of people with major depressive disorder (MDD) fail at least two antidepressant drug trials at 1 year. Together with clinical and experimental evidence indicating that the pathophysiology of MDD is multifactorial, this observation underscores the importance of elucidating mechanisms beyond monoaminergic dysregulation that can contribute to the genesis and persistence of MDD. Oxidative stress and neuroinflammation are mechanistically linked to the presence of neurovascular dysfunction with blood-brain barrier (BBB) hyperpermeability in selected neurological disorders, such as stroke, epilepsy, multiple sclerosis, traumatic brain injury, and Alzheimer’s disease. In contrast to other major psychiatric disorders, MDD is frequently comorbid with such neurological disorders and constitutes an independent risk factor for morbidity and mortality in disorders characterized by vascular endothelial dysfunction (cardiovascular disease and diabetes mellitus). Oxidative stress and neuroinflammation are implicated in the neurobiology of MDD. More recent evidence links neurovascular dysfunction with BBB hyperpermeability to MDD without neurological comorbidity. We review this emerging literature and present a theoretical integration between these abnormalities to those involving oxidative stress and neuroinflammation in MDD. We discuss our hypothesis that alterations in endothelial nitric oxide levels and endothelial nitric oxide synthase uncoupling are central mechanistic links in this regard. Understanding the contribution of neurovascular dysfunction with BBB hyperpermeability to the pathophysiology of MDD may help to identify novel therapeutic and preventative approaches

    Towards the clinical implementation of pharmacogenetics in bipolar disorder

    Full text link

    Age dependency of cerebral P-gp function measured with (R)-[11C]verapamil and PET

    Full text link
    PURPOSE: The aim of this study was to assess the influence of age on the functional activity of the multidrug efflux transporter P-glycoprotein (P-gp) at the human blood-brain barrier. METHODS: Seven young (mean age: 27 +/- 4 years) and six elderly (mean age: 69 +/- 9 years) healthy volunteers underwent dynamic (R)-[(11)C]verapamil (VPM) positron emission tomography (PET) scans and arterial blood sampling. Parametric distribution volume (DV) images were generated using Logan linearisation, and age groups were compared with statistical parametric mapping (SPM). Brain regions that SPM analysis had shown to be most affected by age were analysed by a region of interest (ROI)-based approach using a maximum probability brain atlas, before and after partial volume correction (PVC). RESULTS: SPM analysis revealed significant clusters of DV increases in cerebellum, temporal and frontal lobe of elderly compared to younger subjects. In the ROI-based analysis, elderly subjects showed significant DV increases in amygdala (+30%), insula (+26%) and cerebellum (+25%) before PVC, and in insula (+33%) after PVC. CONCLUSIONS: Increased VPM DV values in the brains of elderly subjects suggest a decrease in cerebral P-gp function with increasing age

    The Role of P-Glycoprotein in Psychiatric Disorders and in Psychiatric Treatment

    No full text
    corecore