19 research outputs found

    Prevalence and progression of visual impairment in patients newly diagnosed with clinical type 2 diabetes: a 6-year follow up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many diabetic patients fear visual loss as the worst consequence of diabetes. In most studies the main eye pathology is assigned as the cause of visual impairment. This study analysed a broad range of possible ocular and non-ocular predictors of visual impairment prospectively in patients newly diagnosed with clinical type 2 diabetes.</p> <p>Methods</p> <p>Data were from a population-based cohort of 1,241 persons newly diagnosed with clinical, often symptomatic type 2 diabetes aged ≥ 40 years. After 6 years, 807 patients were followed up. Standard eye examinations were done by practising ophthalmologists.</p> <p>Results</p> <p>At diabetes diagnosis median age was 65.5 years. Over 6 years, the prevalence of blindness (visual acuity of best seeing eye ≤ 0.1) rose from 0.9% (11/1,241) to 2.4% (19/807) and the prevalence of moderate visual impairment (> 0.1; < 0.5) rose from 5.4% (67/1,241) to 6.7% (54/807). The incidence (95% confidence interval) of blindness was 40.2 (25.3-63.8) per 10,000 patient-years. Baseline predictors of level of visual acuity (age, age-related macular degeneration (AMD), cataract, living alone, low self-rated health, and sedentary life-style) and speed of continued visual loss (age, AMD, diabetic retinopathy (DR), cataract, living alone, and high fasting triglycerides) were identified.</p> <p>Conclusions</p> <p>In a comprehensive assessment of predictors of visual impairment, even in a health care system allowing self-referral to free eye examinations, treatable eye pathologies such as DR and cataract emerge together with age as the most notable predictors of continued visual loss after diabetes diagnosis. Our results underline the importance of eliminating barriers to efficient eye care by increasing patients' and primary care practitioners' awareness of the necessity of regular eye examinations and timely surgical treatment.</p

    Cholesterol-Dependent Anaplasma phagocytophilum Exploits the Low-Density Lipoprotein Uptake Pathway

    Get PDF
    In eukaryotes, intracellular cholesterol homeostasis and trafficking are tightly regulated. Certain bacteria, such as Anaplasma phagocytophilum, also require cholesterol; it is unknown, however, how this cholesterol-dependent obligatory intracellular bacterium of granulocytes interacts with the host cell cholesterol regulatory pathway to acquire cholesterol. Here, we report that total host cell cholesterol increased >2-fold during A. phagocytophilum infection in a human promyelocytic leukemia cell line. Cellular free cholesterol was enriched in A. phagocytophilum inclusions as detected by filipin staining. We determined that A. phagocytophilum requires cholesterol derived from low-density lipoprotein (LDL), because its replication was significantly inhibited by depleting the growth medium of cholesterol-containing lipoproteins, by blocking LDL uptake with a monoclonal antibody against LDL receptor (LDLR), or by treating the host cells with inhibitors that block LDL-derived cholesterol egress from late endosomes or lysosomes. However, de novo cholesterol biosynthesis is not required, since inhibition of the biosynthesis pathway did not inhibit A. phagocytophilum infection. The uptake of fluorescence-labeled LDL was enhanced in infected cells, and LDLR expression was up-regulated at both the mRNA and protein levels. A. phagocytophilum infection stabilized LDLR mRNA through the 3′ UTR region, but not through activation of the sterol regulatory element binding proteins. Extracellular signal–regulated kinase (ERK) was up-regulated by A. phagocytophilum infection, and inhibition of its upstream kinase, MEK, by a specific inhibitor or siRNA knockdown, reduced A. phagocytophilum infection. Up-regulation of LDLR mRNA by A. phagocytophilum was also inhibited by the MEK inhibitor; however, it was unclear whether ERK activation is required for LDLR mRNA up-regulation by A. phagocytophilum. These data reveal that A. phagocytophilum exploits the host LDL uptake pathway and LDLR mRNA regulatory system to accumulate cholesterol in inclusions to facilitate its replication
    corecore