9,109 research outputs found
Influence of Mg, Ag and Al substitutions on the magnetic excitations in the triangular-lattice antiferromagnet CuCrO2
Magnetic excitations in CuCrO, CuCrMgO,
CuAgCrO, and CuCrAlO have been
studied by powder inelastic neutron scattering to elucidate the element
substitution effects on the spin dynamics in the Heisenberg triangular-lattice
antiferromagnet CuCrO. The magnetic excitations in
CuCrMgO consist of a dispersive component and a flat
component. Though this feature is apparently similar to CuCrO, the energy
structure of the excitation spectrum shows some difference from that in
CuCrO. On the other hand, in CuAgCrO and
CuCrAlO the flat components are much reduced, the
low-energy parts of the excitation spectra become intense, and additional
low-energy diffusive spin fluctuations are induced. We argued the origins of
these changes in the magnetic excitations are ascribed to effects of the doped
holes or change of the dimensionality in the magnetic correlations.Comment: 7 pages, 5 figure
Специализированные шлихо-геохимические исследования при поисковых работах в условиях Енисейского кряжа
Large N Duality, Lens Spaces and the Chern-Simons Matrix Model
We demonsrate that the spectral curve of the matrix model for Chern-Simons
theory on the Lens space S^{3}/\ZZ_p is precisely the Riemann surface which
appears in the mirror to the blownup, orbifolded conifold. This provides the
first check of the -model large duality for T^{*}(S^{3}/\ZZ_p), p>2.Comment: 12 pages, 2 figure
D-branes as a Bubbling Calabi-Yau
We prove that the open topological string partition function on a D-brane
configuration in a Calabi-Yau manifold X takes the form of a closed topological
string partition function on a different Calabi-Yau manifold X_b. This
identification shows that the physics of D-branes in an arbitrary background X
of topological string theory can be described either by open+closed string
theory in X or by closed string theory in X_b. The physical interpretation of
the ''bubbling'' Calabi-Yau X_b is as the space obtained by letting the
D-branes in X undergo a geometric transition. This implies, in particular, that
the partition function of closed topological string theory on certain bubbling
Calabi-Yau manifolds are invariants of knots in the three-sphere.Comment: 32 pages; v.2 reference adde
Topologically protected surface states in a centrosymmetric superconductor beta-PdBi2
The topological aspects of electrons in solids emerge in realistic matters as
represented by topological insulators. They are expected to show a variety of
new magneto-electric phenomena, and especially the ones hosting
superconductivity are strongly desired as the candidate for topological
superconductors (TSC). Possible TSC materials have been mostly developed by
introducing carriers into topological insulators, nevertheless, those
exhibiting indisputable superconductivity free from inhomogeneity are very few.
Here we report on the observation of topologically-protected surface states in
a centrosymmetric layered superconductor, beta-PdBi2, by utilizing spin- and
angle-resolved photoemission spectroscopy. Besides the bulk bands, several
surface bands, some of which crossing the Fermi level, are clearly observed
with symmetrically allowed in-plane spin-polarizations. These surface states
are precisely evaluated to be topological, based on the Z2 invariant analysis
in analogy to 3-dimensional strong topological insulators. beta-PdBi2 may offer
a TSC realized without any carrier-doping or applying pressure, i.e. a solid
stage to investigate the topological aspect in the superconducting condensate.Comment: 17 pages, 4 figure
Polaronic Heat Capacity in The Anderson - Hasegawa Model
An exact treatment of the Anderson - Hasegawa two - site model, incorporating
the presence of superexchange and polarons, is used to compute the heat
capacity. The calculated results point to the dominance of the lattice
contribution, especially in the ferromagnetic regime. This behavior is in
qualitative agreement with experimental findings.Comment: 9 pages, Revtex, 4 postscript figure
Super-critical Accretion Flows around Black Holes: Two-dimensional, Radiation-pressure-dominated Disks with Photon-trapping
The quasi-steady structure of super-critical accretion flows around a black
hole is studied based on the two-dimensional radiation-hydrodynamical (2D-RHD)
simulations. The super-critical flow is composed of two parts: the disk region
and the outflow regions above and below the disk. Within the disk region the
circular motion as well as the patchy density structure are observed, which is
caused by Kelvin-Helmholtz instability and probably by convection. The
mass-accretion rate decreases inward, roughly in proportion to the radius, and
the remaining part of the disk material leaves the disk to form outflow because
of strong radiation pressure force. We confirm that photon trapping plays an
important role within the disk. Thus, matter can fall onto the black hole at a
rate exceeding the Eddington rate. The emission is highly anisotropic and
moderately collimated so that the apparent luminosity can exceed the Eddington
luminosity by a factor of a few in the face-on view. The mass-accretion rate
onto the black hole increases with increase of the absorption opacity
(metalicity) of the accreting matter. This implies that the black hole tends to
grow up faster in the metal rich regions as in starburst galaxies or
star-forming regions.Comment: 16 pages, 12 figures, accepted for publication in ApJ (Volume 628,
July 20, 2005 issue
The boundary state for a class of analytic solutions in open string field theory
We construct a boundary state for a class of analytic solutions in the
Witten's open string field theory. The result is consistent with the property
of the zero limit of a propagator's length, which was claimed in [19]. And we
show that our boundary state becomes expected one for the perturbative vacuum
solution and the tachyon vacuum solution. We also comment on possible presence
of multi-brane solutions and ghost brane solutions from our boundary state.Comment: 19 pages, 2 figure
Wilson Loops, Geometric Transitions and Bubbling Calabi-Yau's
Motivated by recent developments in the AdS/CFT correspondence, we provide
several alternative bulk descriptions of an arbitrary Wilson loop operator in
Chern-Simons theory. Wilson loop operators in Chern-Simons theory can be given
a description in terms of a configuration of branes or alternatively
anti-branes in the resolved conifold geometry. The representation of the Wilson
loop is encoded in the holonomy of the gauge field living on the dual brane
configuration. By letting the branes undergo a new type of geometric
transition, we argue that each Wilson loop operator can also be described by a
bubbling Calabi-Yau geometry, whose topology encodes the representation of the
Wilson loop. These Calabi-Yau manifolds provide a novel representation of knot
invariants. For the unknot we confirm these identifications to all orders in
the genus expansion.Comment: 26 pages; v.2 typos corrected, explanations clarified; v.3 typos
corrected, reference adde
- …
