71 research outputs found

    Residual cancer burden after neoadjuvant chemotherapy and long-term survival outcomes in breast cancer: a multicentre pooled analysis of 5161 patients

    Get PDF

    Effectiveness of manual therapies: the UK evidence report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this report is to provide a succinct but comprehensive summary of the scientific evidence regarding the effectiveness of manual treatment for the management of a variety of musculoskeletal and non-musculoskeletal conditions.</p> <p>Methods</p> <p>The conclusions are based on the results of systematic reviews of randomized clinical trials (RCTs), widely accepted and primarily UK and United States evidence-based clinical guidelines, plus the results of all RCTs not yet included in the first three categories. The strength/quality of the evidence regarding effectiveness was based on an adapted version of the grading system developed by the US Preventive Services Task Force and a study risk of bias assessment tool for the recent RCTs.</p> <p>Results</p> <p>By September 2009, 26 categories of conditions were located containing RCT evidence for the use of manual therapy: 13 musculoskeletal conditions, four types of chronic headache and nine non-musculoskeletal conditions. We identified 49 recent relevant systematic reviews and 16 evidence-based clinical guidelines plus an additional 46 RCTs not yet included in systematic reviews and guidelines.</p> <p>Additionally, brief references are made to other effective non-pharmacological, non-invasive physical treatments.</p> <p>Conclusions</p> <p>Spinal manipulation/mobilization is effective in adults for: acute, subacute, and chronic low back pain; migraine and cervicogenic headache; cervicogenic dizziness; manipulation/mobilization is effective for several extremity joint conditions; and thoracic manipulation/mobilization is effective for acute/subacute neck pain. The evidence is inconclusive for cervical manipulation/mobilization alone for neck pain of any duration, and for manipulation/mobilization for mid back pain, sciatica, tension-type headache, coccydynia, temporomandibular joint disorders, fibromyalgia, premenstrual syndrome, and pneumonia in older adults. Spinal manipulation is not effective for asthma and dysmenorrhea when compared to sham manipulation, or for Stage 1 hypertension when added to an antihypertensive diet. In children, the evidence is inconclusive regarding the effectiveness for otitis media and enuresis, and it is not effective for infantile colic and asthma when compared to sham manipulation.</p> <p>Massage is effective in adults for chronic low back pain and chronic neck pain. The evidence is inconclusive for knee osteoarthritis, fibromyalgia, myofascial pain syndrome, migraine headache, and premenstrual syndrome. In children, the evidence is inconclusive for asthma and infantile colic.</p

    Rapid Evolution of the CD8(+) TCR Repertoire in Neonatal Mice

    No full text
    Currently, there is little consensus regarding the most appropriate animal model to study acute infection and the virus-specific CD8(+) T cell (CTL) responses in neonates. TCRb high-throughput sequencing in naive CTL of differently aged neonatal mice was performed, which demonstrated differential V beta family gene usage. Using an acute influenza infection model, we examined the TCR repertoire of the CTL response in neonatal and adult mice infected with influenza type Avirus. Three-day-old mice mounted a greatly reduced primary NP(366-374)-specific CTL response when compared with 7-d-old and adult mice, whereas secondary CTL responses were normal. Analysis of NP(366-374)-specific CTL TCR repertoire revealed different V beta gene usage and greatly reduced public clonotypes in 3-d-old neonates. This could underlie the impaired CTL response in these neonates. To directly test this, we examined whether controlling the TCR would restore neonatal CTL responses. We performed adoptive transfers of both nontransgenic and TCR-transgenic OVA((257-264)-specific) (OT-I) CD8(+) T cells into influenza-infected hosts, which revealed that naive neonatal and adult OT-I cells expand equally well in neonatal and adult hosts. In contrast, nontransgenic neonatal CD8(+) T cells when transferred into adults failed to expand. We further demonstrate that differences in TCR avidity may contribute to decreased expansion of the endogenous neonatal CTL. These studies highlight the rapid evolution of the neonatal TCR repertoire during the first week of life and show that impaired neonatal CTL immunity results from an immature TCR repertoire, rather than intrinsic signaling defects or a suppressive environment

    COVID-19 Outcomes Among Patients With Cancer: Observations From the University of California Cancer Consortium COVID-19 Project Outcomes Registry.

    No full text
    BackgroundThe risks associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated illness, coronavirus disease 2019 (COVID-19), among patients with a cancer diagnosis have not been fully characterized. This study leverages data from a multi-institutional cohort study, the University of California Cancer COVID Consortium, to evaluate outcomes associated with SARS-CoV-2 infection among patients with cancer.MethodsClinical data were collected from March to November 2020 and included patient demographics, cancer history and treatment, SARS-CoV-2 exposure and testing, and COVID-19 clinical management and outcomes. Multivariate ordinal logistic regression permitting unequal slopes was used to evaluate the impact of demographic, disease, and treatment factors on SARS-CoV-2 related hospitalization, intensive care unit (ICU) admission, and mortality.FindingsAmong all evaluated patients (n = 303), 147 (48%) were male, 118 (29%) were older adults (≥65 years old), and 104 (34%) were non-Hispanic white. A subset (n = 63, 21%) had hematologic malignancies and the remaining had solid tumors. Patients were hospitalized for acute care (n = 79, 26%), ICU-level care (n = 28, 9%), or died (n = 21, 7%) due to COVID-19. Patients with ≥2 comorbidities were more likely to require acute care (odds ratio [OR] 2.09 [95% confidence interval (CI), 1.23-3.55]). Cough was identified as a significant predictor of ICU hospitalization (OR 2.16 [95% CI, 1.03-4.57]). Importantly, mortality was associated with an active cancer diagnosis (OR 3.64 [95% CI, 1.40-9.5]) or advanced age (OR 3.86 [95% CI, 1.2-12.44]).InterpretationThis study observed that patients with active cancer or advanced age are at an increased risk of death from COVID-19. These study observations can inform risk counseling related to COVID-19 for patients with a cancer diagnosis

    Assessing Unique Risk Factors for COVID-19 Complications Among Cancer Patients: A Multi-ethnic Cohort Study.

    No full text
    A myriad of organ-specific complications have been observed with COVID-19. While racial/ethnic minorities have been disproportionately burdened by this disease, our understanding of the unique risk factors for complications among a diverse population of cancer patients remains limited. This is a multi-institutional, multi-ethnic cohort study evaluating COVID-19 complications among cancer patients. Patients with an invasive cancer diagnosis and confirmed SARS-CoV-2 infection were identified from March to November 2020. Demographic and clinical data were obtained and a multivariate logistic regression was employed to evaluate the impact of demographic and clinical factors on COVID-19 complications. The study endpoints were evaluated independently and included any complication, sepsis, pulmonary complications and cardiac complications. A total of 303 patients were evaluated, of whom 48% were male, 79% had solid tumors, and 42% were Hispanic/Latinx (Hispanic). Malignant hematologic cancers were associated with a higher risk of sepsis (OR 3.93 (95% CI 1.58-9.81)). Male patients had a higher risk of sepsis (OR 4.42 (95% CI 1.63-11.96)) and cardiac complications (OR 2.02 (95% CI 1.05-3.89)). Hispanic patients had a higher odds of any complication (OR 2.31 (95% CI 1.18-4.51)) and other race was associated with a higher odds of cardiac complications (OR 2.41 (95% CI 1.01-5.73)). Clinically, fever, cough, and ≥2 co-morbidities were independently significantly associated with any complication. This analysis evaluated covariates that can significantly predict a myriad of complications among a multi-ethnic cohort of cancer patients. The conclusions drawn from this analysis elucidate a mechanistic understanding of differential illness severity from COVID-19
    • …
    corecore