88 research outputs found

    The Bulge/Disk Connection in Late-type Spirals

    Get PDF
    Recent ground-based photometric investigations suggest that central regions of late-type spirals are closely coupled to the inner disk and probably formed via secular evolution. Evidence presented in support of this model includes the predominance of exponential bulges, the correlation of bulge and disk scale lengths, blueness of the bulge and small differences between bulge and central disk colors, detection of spiral structure into the core, and rapid rotation. Recent HST observations show that our own bulge and that of M31, M32, and M33 probably harbor both an old and intermediate-age populations in agreement with models of early collapse of the spheroid plus gas transfer from the disk. Secular evolution provides a mechanism to build-up central regions in late-type spirals; mergers or accretion of small satellites could explain the brighter, kinematically distinct bulges of Sa's and SO's

    Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders

    Get PDF
    Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively

    Type 1 diabetes: translating mechanistic observations into effective clinical outcomes

    Full text link
    Type 1 diabetes remains an important health problem, particularly in Western countries where the incidence has been increasing in younger children(1). In 1986, Eisenbarth described Type 1 diabetes as a chronic autoimmune disease. Work over the past 3 ½ decades has identified many of the genetic, immunologic, and environmental factors that are involved in the disease and have led to hypotheses concerning its pathogenesis. Based on these findings, clinical trials have been conducted to test these hypotheses but have had mixed results. In this review, we discuss the findings that have led to current concepts of the disease mechanisms, how this understanding has prompted clinical studies, and the results of these studies. The findings from preclinical and clinical studies support the original proposed model for how type 1 diabetes develops, but have also suggested that this disease is more complex than originally thought and will require broader treatment approaches
    corecore