9 research outputs found

    The association of Alu repeats with the generation of potential AU-rich elements (ARE) at 3' untranslated regions.

    Get PDF
    BACKGROUND: A significant portion (about 8% in the human genome) of mammalian mRNA sequences contains AU (Adenine and Uracil) rich elements or AREs at their 3' untranslated regions (UTR). These mRNA sequences are usually stable. However, an increasing number of observations have been made of unstable species, possibly depending on certain elements such as Alu repeats. ARE motifs are repeats of the tetramer AUUU and a monomer A at the end of the repeats ((AUUU)(n)A). The importance of AREs in biology is that they make certain mRNA unstable. Proto-oncogene, such as c-fos, c-myc, and c-jun in humans, are associated with AREs. Although it has been known that the increased number of ARE motifs caused the decrease of the half-life of mRNA containing ARE repeats, the exact mechanism is as of yet unknown. We analyzed the occurrences of AREs and Alu and propose a possible mechanism for how human mRNA could acquire and keep AREs at its 3' UTR originating from Alu repeats. RESULTS: Interspersed in the human genome, Alu repeats occupy 5% of the 3' UTR of mRNA sequences. Alu has poly-adenine (poly-A) regions at its end, which lead to poly-thymine (poly-T) regions at the end of its complementary Alu. It has been found that AREs are present at the poly-T regions. From the 3' UTR of the NCBI's reference mRNA sequence database, we found nearly 40% (38.5%) of ARE (Class I) were associated with Alu sequences (Table 1) within one mismatch allowance in ARE sequences. Other ARE classes had statistically significant associations as well. This is far from a random occurrence given their limited quantity. At each ARE class, random distribution was simulated 1,000 times, and it was shown that there is a special relationship between ARE patterns and the Alu repeats. CONCLUSION: AREs are mediating sequence elements affecting the stabilization or degradation of mRNA at the 3' untranslated regions. However, AREs' mechanism and origins are unknown. We report that Alu is a source of ARE. We found that half of the longest AREs were derived from the poly-T regions of the complementary Alu

    14-3-3σ is a p37 AUF1-binding protein that facilitates AUF1 transport and AU-rich mRNA decay

    No full text
    Short-lived cytokine mRNAs contain an AU-rich destabilizing element (ARE). AUF1 proteins bind the ARE, undergo shuttling, and promote cytoplasmic ARE-mRNA decay through a poorly understood mechanism. We therefore identified AUF1-interacting proteins that may play a role in ARE-mRNA decay. We used mass-spectrometry to identify 14-3-3σ protein as an AUF1-interacting protein. 14-3-3σ binds selectively and strongly to p37 AUF1 and to a lesser extent to the p40 isoform, the two isoforms most strongly associated with ARE-mRNA decay, but not to the two larger isoforms, p42 and p45. The 14-3-3σ interaction site on p37 was mapped to a region found only in the two smaller AUF1 isoforms and which overlaps a putative nuclear localization signal (NLS). Stable overexpression of 14-3-3σ significantly increased cytoplasmic accumulation of p37 AUF1 and reduced the steady-state level and half-life of a reporter ARE-mRNA. siRNA silencing of AUF1 eliminated the effect of 14-3-3σ overexpression. 14-3-3σ therefore binds to p37 AUF1, retains it in the cytoplasm probably by masking its NLS, and enhances rapid turnover of ARE-mRNAs

    Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes.

    No full text
    The carbon source-responsive element (CSRE) mediates transcriptional activation of the gluconeogenic genes during growth of the yeast Saccharomyces cerevisiae on non-fermentable carbon sources. Previous studies have suggested that the Cat8 protein activates the expression of CSRE-binding factors. We show here that one of these factors is Sip4, a glucose-regulated C6 zinc cluster activator which was identified by its interaction with the Snf1 protein kinase. We present genetic evidence that Sip4 contributes to transcriptional activation by the CSRE and biochemical evidence that Sip4 binds to the CSRE. Binding was detected in electrophoretic mobility shift assays with both yeast nuclear extracts and a bacterially expressed Sip4 fusion protein. Evidence suggests that Sip4 also activates the expression of other CSRE-binding proteins. Finally, we show that Cat8 regulates SIP4 expression and that overexpression of Sip4 compensates for loss of Cat8. We propose a model for activation by the CSRE in which Sip4 and Cat8 have related functions, but Cat8 is the primary regulator because it controls Sip4 expression
    corecore