91 research outputs found

    Identification of a novel gene regulating amygdala-mediated fear extinction.

    Get PDF
    Recent years have seen advances in our understanding of the neural circuits associated with trauma-related disorders, and the development of relevant assays for these behaviors in rodents. Although inherited factors are known to influence individual differences in risk for these disorders, it has been difficult to identify specific genes that moderate circuit functions to affect trauma-related behaviors. Here, we exploited robust inbred mouse strain differences in Pavlovian fear extinction to uncover quantitative trait loci (QTL) associated with this trait. We found these strain differences to be resistant to developmental cross-fostering and associated with anatomical variation in basolateral amygdala (BLA) perineuronal nets, which are developmentally implicated in extinction. Next, by profiling extinction-driven BLA expression of QTL-linked genes, we nominated Ppid (peptidylprolyl isomerase D, a member of the tetratricopeptide repeat (TPR) protein family) as an extinction-related candidate gene. We then showed that Ppid was enriched in excitatory and inhibitory BLA neuronal populations, but at lower levels in the extinction-impaired mouse strain. Using a virus-based approach to directly regulate Ppid function, we demonstrated that downregulating BLA-Ppid impaired extinction, while upregulating BLA-Ppid facilitated extinction and altered in vivo neuronal extinction encoding. Next, we showed that Ppid colocalized with the glucocorticoid receptor (GR) in BLA neurons and found that the extinction-facilitating effects of Ppid upregulation were blocked by a GR antagonist. Collectively, our results identify Ppid as a novel gene involved in regulating extinction via functional actions in the BLA, with possible implications for understanding genetic and pathophysiological mechanisms underlying risk for trauma-related disorders

    Cardiac tamponade related to a coronary injury by a pericardial calcification: an unusual complication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac tamponade is a rare but severe complication of pericardial effusion with a poor prognosis. Prompt diagnosis using transthoracic echocardiography allows guiding initial therapeutic management. Although etiologies are numerous, cardiac tamponade is more often due to a hemopericardium. Rarely, a coronary injury may result in such a hemopericardium with cardiac tamponade. Coronary artery aneurysm are the main etiologies but blunt, open chest trauma or complication of endovascular procedures have also been described.</p> <p>Case presentation</p> <p>A 83-year-old hypertensive man presented for dizziness and hypotension. The patient had oliguria and mottled skin. Transthoracic echocardiography disclosed a circumferential pericardial effusion with a compressed right atrium, confirmed by contrast-enhanced thoracic CT scan. A pig-tail catheter allowed to withdraw 500 mL of blood, resulting in a transient improvement of hemodynamics. Rapidly, recurrent hypotension prompted a reoperation. An active bleeding was identified at the level of the retroventricular coronary artery. The pericardium was thickened with several "sharping" calcified plaques in the vicinity of the bleeding areas. On day 2, vasopressors were stopped and the patient was successfully extubated. Final diagnosis was a spontaneous cardiac tamponade secondary to a coronary artery injury attributed to a "sharping"calcified pericardial plaque.</p> <p>Conclusion</p> <p>Cardiac tamponade secondary to the development of a hemopericardium may develop as the result of a myocardial and coronary artery injury induced by a calcified pericardial plaque.</p
    corecore