5 research outputs found

    Analysis of Stem Cell Motility In Vivo Based on Immunodetection of Planarian Neoblasts and Tracing of BrdU-Labeled Cells After Partial Irradiation

    No full text
    Planarian flatworms have become an important system for the study of stem cell behavior and regulation in vivo. These organisms are able to regenerate any part of their body upon damage or amputation. A crucial cellular event in the process of planarian regeneration is the migration of pluripotent stem cells (known as neoblasts) to the site of injury. Here we describe two approaches for analyzing migration of planarian stem cells to an area where these have been ablated by localized X-ray irradiation. The first approach involves immunolabeling of mitotic neoblasts, while the second is based on tracing stem cells and their progeny after BrdU incorporation. The use of planarians in studies of cell motility is suitable for the identification of factors that influence stem cell migration in vivo and is amenable to RNA interference or pharmacological screening

    Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale.

    No full text
    The establishment of size and shape remains a fundamental challenge in biological research that planarian flatworms uniquely epitomize. Planarians can regenerate complete and perfectly proportioned animals from tiny and arbitrarily shaped tissue pieces; they continuously renew all organismal cell types from abundant pluripotent stem cells, yet maintain shape and anatomy in the face of constant turnover; they grow when feeding and literally degrow when starving, while scaling form and function over as much as a 40-fold range in body length or an 800-fold change in total cell numbers. This review provides a broad overview of the current understanding of the planarian stem cell system, the mechanisms that pattern the planarian body plan and how the interplay between patterning signals and cell fate choices orchestrates regeneration. What emerges is a conceptual framework for the maintenance and regeneration of the planarian body plan on basis of the interplay between pluripotent stem cells and self-organizing patterns and further, the general utility of planarians as model system for the mechanistic basis of size and shape
    corecore