9 research outputs found

    In vitro gastrointestinal digestion impact on stability, bioaccessibility and antioxidant activity of polyphenols from wild and commercial blackberries (Rubus spp.)

    Get PDF
    Gastrointestinal digestion (GID) is a physiological process that transforms the stability, bioaccessibility and antioxidant activity (AOX) of polyphenols from blackberries (Rubus spp.). This study aimed to investigate the effect of the INFOGEST® GID protocol on the phenolic stability, bioaccessibility and AOX of Mexican wild (WB) and commercial (CB) blackberries. After GID, the total phenolic and anthocyanin contents in blackberries decreased by ≥68% and ≥74%, respectively. More than 40 phenolics were identified during GID; most of them degraded completely during digestion. GID had a negative effect on the AOX of both fruits (>50%), but WB showed the highest antioxidant activities, as assessed by the ORAC, DPPH, reducing power and β-carotene bleaching methods. In Caco-2 cells, the cell-based antioxidant activity of digested blackberries (p < 0.05) decreased by 48% in WB and by 56% in CB. The capacity to inhibit intracellular ROS decreased by 50% in WB and by up to 86% in CB, after digestion. GID is a complex process that impacts on the bioactive properties of food nutrients, especially phenolics. In vitro and cellular AOX of WB polyphenols withstood the gastrointestinal environment better than CB phenolics. The in vitro assays results suggest that phenolics from underutilized WB have a higher bioaccessibility and antioxidant capacity than the polyphenols from the most frequently consumed CB. However, whether this corresponds to a better bioaccessibility in humans remains to be determined in future work

    Effect of mivacurium 200 and 250 μg/kg in infants during isoflurane anesthesia: a randomized controlled trial [ISRCTN07742712]

    Get PDF
    BACKGROUND: Infants usually respond differently to a neuromuscular relaxant compared to children or adults. Isoflurane is commonly used as an anesthetic gas in infants. In an RCT design, we investigated whether a dose of mivacurium 250 μg/kg results in faster onset of action than 200 μg/kg in infants under isoflurane anesthesia. Spontaneous recovery times and cardiovascular response were also evaluated. METHODS: Twenty-four low surgical risk children, aged 6–24 months, undergoing an elective surgery and requiring tracheal intubation were selected. After anesthetic induction, patients randomly received an iv bolus dose of mivacurium 200 or 250 μg/kg. After maximal relaxation, the patient was intubated. Isoflurane was administered to maintain anesthetic level during the surgical procedure. Neuromuscular function was monitored by accelerometry (TOF-Guard) at the adductor pollicies. The first twitch (T) of the TOF and the T4/T1 were measured. The time-course of heart rate and systolic and diastolic blood pressure were analysed by transforming them into their respective areas under the curve. RESULTS: Mivacurium 250 μg/kg produced a maximal T block faster than 200 μg/kg, i.e. 2.4 ± 1.1 vs. 3.5 ± 1.4 min (p < 0.05). Spontaneous recovery times were similar in both groups. Heart rate was similar between doses while systolic and diastolic blood pressures were lower with the higher dose (p < 0.05). Flushing was observed in two cases, one in each group. CONCLUSIONS: The maximal effect of mivacurium 250 μg/kg, in infants under isoflurane anesthesia, was present one minute faster than 200 μg/kg. However, it produced a significant cardiovascular response

    Genetic Ancestry, Race, and Severity of Acutely Decompensated Cirrhosis in Latin America

    Get PDF
    Background & Aims: Genetic ancestry or racial differences in health outcomes exist in diseases associated with systemic inflammation (eg, COVID-19). This study aimed to investigate the association of genetic ancestry and race with acute-on-chronic liver failure (ACLF), which is characterized by acute systemic inflammation, multi-organ failure, and high risk of short-term death. / Methods: This prospective cohort study analyzed a comprehensive set of data, including genetic ancestry and race among several others, in 1274 patients with acutely decompensated cirrhosis who were nonelectively admitted to 44 hospitals from 7 Latin American countries. / Results: Three hundred ninety-five patients (31.0%) had ACLF of any grade at enrollment. Patients with ACLF had a higher median percentage of Native American genetic ancestry and lower median percentage of European ancestry than patients without ACLF (22.6% vs 12.9% and 53.4% vs 59.6%, respectively). The median percentage of African genetic ancestry was low among patients with ACLF and among those without ACLF. In terms of race, a higher percentage of patients with ACLF than patients without ACLF were Native American and a lower percentage of patients with ACLF than patients without ACLF were European American or African American. In multivariable analyses that adjusted for differences in sociodemographic and clinical characteristics, the odds ratio for ACLF at enrollment was 1.08 (95% CI, 1.03–1.13) with Native American genetic ancestry and 2.57 (95% CI, 1.84–3.58) for Native American race vs European American race. / Conclusions: In a large cohort of Latin American patients with acutely decompensated cirrhosis, increasing percentages of Native American ancestry and Native American race were factors independently associated with ACLF at enrollment

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Impact of processing on the in vitro protein quality, bioactive compounds, and antioxidant potential of 10 selected pulses

    Get PDF
    Pulses are consumed worldwide with different processing methods, which may impact their digestibility, protein quality, and composition. This study aims to analyze the effect of extrusion, baking, and cooking on protein nutritional parameters; bioactive compounds; and the impact on antioxidant capacity (AOX) of 10 selected pulses. Sodium dodecyl sulphate‐polyacrylamide gel electrophoresis (SDS‐PAGE) revealed that thermal processing causes modifications to the main storage proteins in pulses. Heating decreased saponin content from 12% to 44% in most heat‐processed samples; phytates were reduced 30%–84%, and polyphenol content decreased 28%–66%. In addition, the in vitro protein digestibility (IVPD) was enhanced 2.5%–9.5%, 3.5%–10.7%, and 2.2%–8.4% by extrusion, cooking, and baking, respectively. AOX showed an improvement in all processed samples (compared to raw flour) evaluated by the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) method and by the oxygen radical absorbance capacity (ORAC). Fe2+ chelation showed that extruded and baked chickpea exhibited a decrease in IC50 by 40% and 70%, respectively. Extruded green and yellow split pea presented the highest Fe2+ chelation, improving by 11%–17% and 13–80%, respectively, when compared to the raw samples. Reducing power was enhanced by 26% in extruded chickpea, 18% and 29% in extruded and baked faba bean, respectively, and 50% in baked navy bean, when compared to the raw samples. Extrusion showed the highest β‐carotene AOX improvements (IC50 90%–96%). In this study, it was demonstrated that pulses AOX attributes can be enhanced by thermal processing; however, this will depend on the legume species and heating process applied. Furthermore, cooking seems to be the most effective thermal method to decrease saponins and phenolics, while extrusion reduced effectively phytic acid on bean samples, and cooking for the rest of pulses. All heating treatments affected positively IVPD, while the highest in vitro protein‐digestibility corrected amino acid score (IVPDCAAS) values were observed for baked pulses. Employing adequate processing methods represents an effective strategy to improve the digestibility of their proteins, as well as increasing the antioxidant potential of the resulting ingredients

    Effect of cooking on the in vitro and in vivo protein quality of soy, oat and wheat varieties

    No full text
    Background and Objectives Soy, wheat, and oats are widely consumed crops globally, but variation between cultivars and processing methods can produce products of varying protein quality. This study cooked two different cultivars of wheat, oats, and soy and compared indices of protein quality as well as quantified differences in antinutritional factors. Findings Protein Efficiency Ratio (PER) was highest in cooked soy cultivars and lowest in wheat samples, with cooking having the most impact on soy PER. Protein Digestibility Corrected Amino Acid Score (PDCAAS) of soy was greater than oats which was greater than wheat. Antinutritional factors differed significantly between crops and cultivars, with processing having the greatest impact on soy. In vitro measurements of PDCAAS correlated well with in vivo assessment. Conclusions Thermal processing has variable effects on protein quality depending on crop and cultivar selected, primarily due to differences in amino acid composition. In vitro measurement of protein quality can be used as a rapid screening tool. Significance and Novelty Direct comparison in protein quality between wheat, oat, and soy is rarely reported. Measuring the protein quality of different cultivars and crops pre and postprocessing provides essential data for product development and dietary formulation

    Profiling modifications in physicochemical, chemical and antioxidant properties of wild blackberry (Rubus sp.) during fermentation with EC 1118 yeast

    No full text
    Mexico is an extensively diverse country with a wide variety of wild species of blackberries (Rubus spp.), which are rich in bioactive compounds, however, these fruits are underutilized. Fermentation is a process that transforms the chemical compounds of fruits and increases nutraceutical properties. This study aimed to determine the physicochemical changes and the bioactive compounds profile that take place during the fermentation of wild blackberries using yeast EC 1118 and to evaluate its relationship with antioxidant activity (AOx). The results indicated that after 96 h of fermentation the content of carbohydrates (56%), total phenolic compounds (37%), and anthocyanins (22%), decreased, respectively. The physicochemical parameters showed statistic differences (p ≤ 0.05) at the endpoint of fermentation. The diversity of fatty acids was increased (55%), compared with unfermented blackberries. The modification of carbohydrates, anthocyanins, catechin, gallic and ellagic acid profiles were also monitored performing chromatographic techniques. The AOx, determined by ORAC and DPPH assays, showed the highest results for ORAC at 96 h increased a 140.2%, while DPPH values enhanced a 36.6% at 48 h of bioprocessing. Strong positive correlations were found between fermentation time and DPPH values (r = 0.8131), between ORAC and gallic acid content (r = 0.8688), and between anthocyanin content and pH (r = 0.9126). The fermentation of wild blackberries with EC 1118 yeast represents an alternative for development and formulation of potential ingredients for functional foods

    A second update on mapping the human genetic architecture of COVID-19

    Get PDF
    corecore