12 research outputs found

    On the solvability of degenerate stochastic partial differential equations in Sobolev spaces

    Get PDF
    Systems of parabolic, possibly degenerate parabolic SPDEs are considered. Existence and uniqueness are established in Sobolev spaces. Similar results are obtained for a class of equations generalizing the deterministic first order symmetric hyperbolic systems.Comment: 26 page

    The Inviscid Limit and Boundary Layers for Navier-Stokes Flows

    Full text link
    The validity of the vanishing viscosity limit, that is, whether solutions of the Navier-Stokes equations modeling viscous incompressible flows converge to solutions of the Euler equations modeling inviscid incompressible flows as viscosity approaches zero, is one of the most fundamental issues in mathematical fluid mechanics. The problem is classified into two categories: the case when the physical boundary is absent, and the case when the physical boundary is present and the effect of the boundary layer becomes significant. The aim of this article is to review recent progress on the mathematical analysis of this problem in each category.Comment: To appear in "Handbook of Mathematical Analysis in Mechanics of Viscous Fluids", Y. Giga and A. Novotn\'y Ed., Springer. The final publication is available at http://www.springerlink.co

    SBV regularity of Systems of Conservation Laws and Hamilton-Jacobi Equation

    Get PDF
    We review the SBV regularity for solutions to hyperbolic systems of conservation laws and Hamilton-Jacobi equations. We give an overview of the techniques involved in the proof, and a collection of related problems concludes the paper
    corecore