15 research outputs found

    Recent progress of optical functional nanomaterials based on organoboron complexes with β-diketonate, ketoiminate and diiminate

    Get PDF
    The synthesis and application of organoboron complexes are a highly relevant topic owng to their unique characteristics. Based on their emissive properties, these complexes have been used to make novel optical materials and devices; boron β-diketonate is a simple and robust organoboron complex. From a series of recent studies, unique and versatile optical properties have been reported. In this review, we introduce the results of primarily recent studies on boron diketonate and related compounds containing polymers and particularly explain their optical properties. Initially, the multi-emission of boron diketonate derivatives and its application to biotechnology are explained. Next, the formation of nanostructures and its emission properties are demonstrated. The modulation of optical properties by mechanical stress is also presented. Finally, recent progress in the development of solid-emissive materials are shown with boron diketonates and their derivatives, which have aggregation-induced emission properties. The versatility of boron diketonates as a building block for the preparation of functional optical materials is the focus of this review

    Arid and Semiarid Rangelands of Argentina

    No full text
    Two thirds of continental Argentina are arid and semiarid rangelands. These rangelands include five phytogeographic regions: (1) Puna, (2) Chaco Occidental, (3) Monte, (4) Caldenal, and (5) Patagonia. This review includes and begins with a brief overview of the climate, soil, and vegetation characteristics of each region. After that, the major causes of degradation or desertification of these territories are indicated, together with the previous and current impacts on the water resources; the physicochemical and biological soil characteristics, and vegetation structure; productive activities; economy; and society. Fortunately, in contrast with various other arid and semiarid regions in the world, a threshold of losses of renewable natural resources has not yet been reached as a result of such degradation or desertification of the study ecological systems. Beyond this threshold, reestablishment of benefits which could have been obtained from rational (not abusive) utilization of those resources will be impossible. Our aim is an improved land use that allows sustainable production, the magnitude of which will depend upon its previous degree of degradation or desertification.Fil: Busso, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Fernandez, Osvaldo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentin

    New Insights in the IP3 Receptor and Its Regulation

    No full text
    The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a Ca2+-release channel mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms are responsible for the generation of intracellular Ca2+ signals that may spread across the entire cell or occur locally in so-called microdomains. Because of their ubiquitous expression, these channels are involved in the regulation of a plethora of cellular processes, including cell survival and cell death. To exert their proper function a fine regulation of their activity is of paramount importance. In this review, we will highlight the recent advances in the structural analysis of the IP3R and try to link these data with the newest information concerning IP3R activation and regulation. A special focus of this review will be directed towards the regulation of the IP3R by protein-protein interaction. Especially the protein family formed by calmodulin and related Ca2+-binding proteins and the pro- and anti-apoptotic/autophagic Bcl-2-family members will be highlighted. Finally, recently identified and novel IP3R regulatory proteins will be discussed. A number of these interactions are involved in cancer development, illustrating the potential importance of modulating IP3R-mediated Ca2+ signaling in cancer treatment.status: publishe
    corecore