24 research outputs found

    ARG098, a novel anti-human Fas antibody, suppresses synovial hyperplasia and prevents cartilage destruction in a severe combined immunodeficient-HuRAg mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The anti-human Fas/APO-1/CD95 (Fas) mouse/human chimeric monoclonal IgM antibody ARG098 (ARG098) targets the human Fas molecule. The cytotoxic effects of ARG098 on cells isolated from RA patients, on normal cells <it>in vitro</it>, and on RA synovial tissue and cartilage <it>in vivo </it>using implanted rheumatoid tissues in an SCID mouse model (SCID-HuRAg) were investigated to examine the potential of ARG098 as a therapy for RA.</p> <p>Methods</p> <p>ARG098 binding to each cell was analyzed by cytometry. The effects of ARG098 on several cells were assessed by a cell viability assay <it>in vitro</it>. Effects on the RA synovium, lymphocytes, and cartilage were assessed <it>in vivo </it>using the SCID-HuRAg mouse model.</p> <p>Results</p> <p>ARG098 bound to cell surface Fas molecules, and induced apoptosis in Fas-expressing RA synoviocytes and infiltrating lymphocytes in the RA synovium in a dose-dependent manner. However, ARG098 did not affect the cell viability of peripheral blood mononuclear cells of RA patients or normal chondrocytes. ARG098 also induced apoptosis in RA synoviocytes and infiltrating lymphocytes in the RA synovium <it>in vivo</it>. The destruction of cartilage due to synovial invasion was inhibited by ARG098 injection in the modified SCID-HuRAg mouse model.</p> <p>Conclusions</p> <p>ARG098 treatment suppressed RA synovial hyperplasia through the induction of apoptosis and prevented cartilage destruction <it>in vivo</it>. These results suggest that ARG098 might become a new therapy for RA.</p

    A Novel Conductometric Urea Biosensor with Improved Analytical Characteristic Based on Recombinant Urease Adsorbed on Nanoparticle of Silicalite

    Get PDF
    Development of a conductometric biosensor for the urea detection has been reported. It was created using a non-typical method of the recombinant urease immobilization via adsorption on nanoporous particles of silicalite. It should be noted that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, and high reproducibility (RSD = 5.1 %). The linear range of urea determination by using the biosensor was 0.05–15 mM, and a lower limit of urea detection was 20 μM. The bioselective element was found to be stable for 19 days. The characteristics of recombinant urease-based biomembranes, such as dependence of responses on the protein and ion concentrations, were investigated. It is shown that the developed biosensor can be successfully used for the urea analysis during renal dialysis

    Monitoring of lactate and glucose levels in engineered cartilage construct by microdialysis

    No full text
    In this work, microdialysis is employed to monitor cell metabolism within engineered tissues and the technique is tested with model engineered cartilage. Bovine articular chondrocytes isolated from the metacarpalphalangeal joint were seeded evenly in an alginate gel at the densities ranging from 3.3 × 106 to 17.2 × 106 cell ml-1, and cultured in a bioreactor for 5 days. The levels of glucose as the main cell nutrient, and the level of lactate as the main cell metabolic product, were monitored continuously in the centre of the construct using a microdialysis probe. Microdialysis probe recovery was assessed for lactate on the basis of relative loss of radioactively labelled lactate, probe fouling was determined from the relative recovery of a dye phenol red. Relative recovery of the probe fell by about 34% over the first 15 h of incubation and then remained constant. No significant probe membrane fouling was observed over the monitoring period. The fluctuation in the measurements resulted mainly from air bubbles, and was reduced by plotting the ratio of lactate to glucose concentration measured in the probe dialysate. Results show that the level of lactate in the construct centre varied with cell density, increasing as cell density increased. Addition of 12% foetal bovine serum to the nutrients supplied to the construct stimulated cell metabolism and led to an increase in lactate levels in the construct centre. © 2005 Elsevier B.V. All rights reserved

    Differential effects of aging on transport properties of anterior and posterior human sclera.

    No full text
    The transport properties and composition of 44 pairs of human sclera, 37-91 years were compared. Solute transport, diffusion and partition coefficients of posterior sclera for solutes ranging in mass from 0.023-70kDa were higher than those of anterior sclera; the posterior region was also more hydrated. The differences in partition coefficient between anterior and posterior sclera became more pronounced as solute molecular weight increased. Partition coefficients and hydration of both regions decreased with increasing age. Chondroitinase ABC digestion, which removed the majority of glycosaminoglycans, increased partition coefficients of both regions significantly. These results suggest that for regions of equal scleral thickness, neglecting the influence of vascular factors, drug delivery will be more readily achieved across the posterior sclera than the anterior sclera in the age group studied and that, for both regions, ease of delivery will decrease with decreasing age

    Ellsworth American : October 1, 1902

    Get PDF
    OBJECTIVE: Here we investigate whether monolayer culture or culture at 21% oxygen influences activity of cytochrome c oxidase, the terminal enzyme in the respiratory chain whose activity is essential for oxidative metabolism and whether return to three dimensional (3-D) culture restores cytochrome c oxidase activity to original levels. METHODS: Primary bovine articular chondrocytes were cultured in alginate beads (3-D) for 4 weeks or in monolayer under 1% and 21% oxygen for up to 9 days and then returned to 3-D culture for up to 4 weeks. Cells were stained to localise cytochrome c oxidase within the cells. Mitochondrial protein content and cytochrome c oxidase enzymatic activity were determined. Expression of cytochrome c oxidase subunits, COXI and COXIV, was assessed by qRT-PCR. RESULTS: Cytochrome c oxidase staining remained minimal in chondrocytes cultured in alginate for 4 weeks under 21% oxygen. Mitochondrial protein content and cytochrome c oxidase activity increased significantly during 9 days of chondrocyte expansion in monolayer, accompanied by up-regulation of the COXI mitochondrial gene but not the COXIV nuclear-encoded gene. Cytochrome c oxidase staining increased from day 5 of monolayer culture and remained high even after the cells were returned to 3-D culture for 4 weeks. CONCLUSIONS: Culture of chondrocytes in monolayer leads to a rapid increase in mitochondrial protein content and cytochrome c oxidase activity. The increase in cytochrome c oxidase activity is not reversed even after chondrocytes are returned to 3-D culture for 4 weeks; high oxygen tension alone does not appear to stimulate cytochrome c oxidase activity

    Microdialysis for monitoring the process of functional tissue culture.

    No full text
    Continuous monitoring is important during tissue culture. However, there are still technical difficulties in monitoring the internal status of cells or tissues. In this paper, microdialysis is adopted to monitor functional tissue growth in a bioreactor. Explanted bovine caudal intervertebral disc (IVD) was used as the test tissue. A microdialysis membrane probe of 100 kDa molecular weight cut-off was employed and in situ calibration methods with phenol red and fluorescent 40 kDa dextran were developed to measure the relative recovery of the solute of interest, and membrane fouling, respectively. Tissue metabolism was monitored successfully. At the same time soluble macromolecules were picked up by the probe and were detected and quantified by Fast Protein Liquid Chromatography (FPLC) and/or Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE). These proteins were believed to be associated with biofunction of engineered tissue. Monitoring of phenol red content in the dialysate indicated that there was no significant fouling of the membrane probe during a 7-day culture period and the Relative Recovery of macromolecules of interests remained roughly 9%. We concluded that microdialysis could be used to sample a wide range of molecular species released during cell metabolism and extracellular matrix turnover, which were direct or indirect indications of cell and tissue functions. The application of the developed system could be extended to monitor tissue repair in vivo, and the development of the engineered tissue
    corecore