7 research outputs found

    Anthocyanins participate in the protection of wheat seedlings against cadmium stress

    Get PDF
    Due to anthropogenic activity, the environment is contaminated with high levels of cadmium, which is a dangerous heavy metal. At very low concentrations, cadmium is bioaccumulative and toxic to animals and plants, generating reactive oxygen species (ROS) that are destructive to cells of organisms. Anthocyanin pigments are natural antioxidants produced in various plant tissues and play a protective role under different environments. In the present study, the putative role of anthocyanins that accumulate in the grains and shoots of bread wheat (Triticum aestivum L.) in response to cadmium-induced toxicity (25 and 50 μM CdCl2) was studied at the seedling stage. For this purpose, a set of near-isogenic lines carrying different alleles of the Pp (purple pericarp) and Rc (red coleoptile) genes was used. The lines responded differently to Cd treatment. The observed changes in anthocyanin metabolism under stress conditions were dependent on the alleles of the Rc genes that determine coleoptile pigmentation and on CdCl2 concentration. In less-colored line carrying the Rc-A1 allele, the antioxidant system was unable to fully cope with oxidative stress and thus induced the synthesis of additional antioxidants, whereas in the most tolerant lines, which have darkpurple coleoptile pigmentation predetermined by Rc-A1 + Rc-D1, the level of anthocyanins in the coleoptiles was independent of stress. A protective role of anthocyanins presented in the coleoptiles of wheat seedlings was observed under moderate Cd stress (25 μM), whereas anthocyanins seemed to be ineffective as protective compounds under heavier stress

    Anthocyanins participate in protection of wheat seedlings from osmotic stress

    Get PDF
    Plant secondary metabolites anthocyanins are considered to play a protective role. In bread wheat (Triticum aestivum L.), anthocyanins can be observed in both adult plants and seedlings. The aim of the current study was to investigate the putative role of anthocyanins present in grains and shoots with respect to the protection of seedlings against drought. For this purpose a set of near isogenic lines (NILs) differing in pericarp and coleoptile colour was used. Water stress was created by artificial shortage of moisture under laboratory conditions. Differences among the lines were observed in a way that the lines with dark-purple grains and coleoptiles (genotype Pp-D1Pp-D1Pp3Pp3Rc-A1Rc-A1Rc-D1Rc-D1) demonstrated a higher seedling drought tolerance than plants with uncoloured pericarp and lightpurple coleoptiles (pp-D1pp-D1pp3pp3Rc-A1Rc-A1rc-D1rc-D1). Furthermore, protection of the root system and the shoot was related with the presence of anthocyanins in grains and coleoptiles, respectively

    Effect of seed pre-sowing gamma-irradiation treatment in bread wheat lines differing by anthocyanin pigmentation

    Get PDF
    Anthocyanins are natural antioxidants able to scavenge free radicals, which appear in plant cells under various environmental stresses. In wheat, anthocyanin pigments can be synthesized in vegetative and reproductive organs. The objective of the current study was to estimate the significance of these substances for wheat seedlings protection under irradiation stress (after treatment of dry seeds with moderate doses of gamma-irradiation, 50, 100 and 200 Gy). For this goal a set of near-isogenic lines (8 NILs) carrying different combinations of the Pp (purple pericarp) and Rc (red coleoptile) alleles were used. The effect of gammairradiation on the growth parameters and anthocyanin content in coleoptiles was studied at the 4th day after germination. The germination rate was not affected, while roots’ and shoots’ lengths and fresh weights as well as root number decreased significantly under irradiation treatment. The effect was deeper under higher doses. Irradiation treatment also induced change of root morphology (‘hairy roots’). The effect of treatment on coleoptile anthocyanin content depended on allelic combination at the Rc loci. At the presence of ‘weak’ Rc-A1 allele anthocyanin content decreased, while it did not change in lines with Rc-A1 + Rc-D1 combination (NILs with intensively colored coleoptiles). Factors ‘pericarp color’ and ‘coleoptile color’ influenced vigor of the seedlings under 50 Gy, whereas under higher doses (100 and 200 Gy) these factors did not contribute to growth parameters changes. Statistically significant positive effect of anthocyanins synthesized in coleoptile (in the presence of Rc-A1 + Rc-D1 dominant alleles) on root growth of seedling germinated from 50 Gy-treated seeds was observed
    corecore