5 research outputs found

    Recent shift in biological communities: A case study from the Eastern European Russian Arctic (Bol`shezemelskaya Tundra)

    No full text
    Recent Arctic warming has major influences on biological communities, especially in freshwater environments. There is substantial evidence that lake ecosystems in the Canadian Arctic and Fennoscandia are undergoing changes that have been linked to human-induced climate warming during the past 150–100 years. However, only few data linking recent climatic changes with the changes in biological communities are available from the Russian Arctic. We investigated a short sediment core (bottom of the core dates to 1830 CE) from Lake Bolshoy Kharbey, the biggest lake of the Bol`shezemelskaya Tundra, western Russian Arctic, using chironomid, cladocera, diatom and palynological analyses. Variations in biological proxy were linked to regional meteorological data and compared with the available sub-recent palaeoecological and hydrobiological studies from the region. The overall change in species composition was the smallest for terrestrial vegetation (0.485 SD) followed by cladoceran communities (0.966 SD). Chironomid taxonomic turnover was 1.331 SD, and the greatest rate of change was observed in diatom assemblages (1.701 SD). Changes in biological communities demonstrated a correlation with meteorologically recorded climatic parameters (air temperature and precipitation). The strongest taxonomic shifts in biological communities took place in 1880 and 1980. Both dates can be linked with prominent and recent climatic events: 1880 can be related to the end of the Little Ice Age in the region and 1980 is the beginning of the modern accelerating warming

    The Holocene environmental changes revealed from the sediments of the Yarkov sub-basin of Lake Chany, south-western Siberia

    No full text
    Lake Chany is the largest endorheic lake in Siberia whose catchment is entirely on the territory of Russia. Its geographical location on the climate-sensitive boundary of wet and dry landscapes provides an opportunity to gain more knowledge about environmental changes in the West Siberian interior during the Holocene and about the evolution of the lake itself. Sediment cores obtained from the Yarkov sub-basin of the lake in 2008 have been comprehensively studied by a number of approaches including sedimentology and AMS dating, pollen, diatom and chironomid analyses (with statistical interpretation of the results), mineralogy of authigenic minerals and geochemistry of plant lipids (biomarker analysis.). Synthesis of new results presented here and published data provides a good justification for our hypothesis that Lake Chany is very young, no older than 3.6 ka BP. Before that, between 9 and 3.6 ka BP, the Chany basin was a swampy landscape with a very low sedimentation rate; it could not be identified as a water body. In the early lake phase, between 3.6 and 1.5 ka BP, the lake was shallow, 1.2–3.5 m in depth, and it rose to its modern size, up to 6.5 m in depth, during the last millennium. Our data reveal important changes in the understanding of the history of this large endorheic lake, as before it was envisioned as a large lake with significant changes in water level since ca. 14 ka BP. In addition to hydrology, our proxies provide updates and details of the regional vegetation and climate change since ca. 4 ka BP in the West-Siberian forest-steppe and steppe. As evolution of the Chany basin is dependent on hydroclimatic changes in a large region of southern West Siberia, we compare lake-level change and climate-change proxies from the other recently and most comprehensively studied lakes of the region
    corecore