21 research outputs found
Fluorescent carbon dioxide indicators
Over the last decade, fluorescence has become the dominant tool in biotechnology and medical imaging. These exciting advances have been underpinned by the advances in time-resolved techniques and instrumentation, probe design, chemical / biochemical sensing, coupled with our furthered knowledge in biology. Complementary volumes 9 and 10, Advanced Concepts of Fluorescence Sensing: Small Molecule Sensing and Advanced Concepts of Fluorescence Sensing: Macromolecular Sensing, aim to summarize the current state of the art in fluorescent sensing. For this reason, Drs. Geddes and Lakowicz have invited chapters, encompassing a broad range of fluorescence sensing techniques. Some chapters deal with small molecule sensors, such as for anions, cations, and CO2, while others summarize recent advances in protein-based and macromolecular sensors. The Editors have, however, not included DNA or RNA based sensing in this volume, as this were reviewed in Volume 7 and is to be the subject of a more detailed volume in the near future
Investigation Of Potential-sensitive Fluorescent Dyes For Applicationin Solid-state Anion Sensors
An optical biosensor for lysine based on the use of lysine decarboxylase and a cadaverine-sensitive membrane
Characterization of a reservoir-type capillary optical microsensor for pCO2 measurements
A reservoir type of capillary microsensor for pCO2 measurements is presented. The sensor is based on the measurement of the fluorescence intensity of the anionic form of the pH indicator 1-hydroxy-3,6,8-pyrenetrisulfonate in the form of its ion pair with a quaternary ammonium base in an ethyl cellulose matrix. The glass capillary containing the reservoir sensor was prepared by immersing the tip of the optical fiber into the sensing agent very close to the sensor tip thus providing a very small volume for the sensing reaction. The purpose of the sensing approach is to regenerate the dye/buffer system by diffusion, which may be poisoned by interfering acids, or bleach by photolysis. The fresh cocktail from the reservoir takes the place of protonated form of the dye. The internal buffer system also makes the protonation-deprotonation equilibria reversible. The distal tip of the internal buffer containing reservoir is coated with a gas-permeable but ion-impermeable teflon membrane. The dynamic range for the detection of pCO2 is between 1 and 20 hPa, which corresponds to the range of dissolved CO2 in water. The response time is 15 s and the detection limit is 1 hPa of pCO2. The recovery performance of this sensor can be improved by means of mechanical adjustment of the sensor tip in a micrometric scale. © 2002 Elsevier Science B.V. All rights reserved
