8 research outputs found

    The invisible businessman: Nuclear physics, patenting practices,and trading activities in the 1930s

    Get PDF
    In the 1930s the production of patents for the protection of intellectual rights became central to the research activities of Enrico Fermi and his group, consistently with a research policy emerging within the Italian Fascist Regime. Behind their work was an international network consisting of businessmen, industrialists, and multinationals who helped them patent their method for the production of artificial radioactive elements and to promote its industrial exploitation. The lack of research funding combined with a more aggressive foreign policy of the regime made it impossible for the group to continue these activities in Rome, and in 1938 the promulgation of racial laws forced them to migrate abroad

    Sul funzionamento oscillatorio dei circuiti a triodi fortemente smorzati

    No full text

    Sistema per drogaggi e trattamenti termici in UHY

    No full text
    Consiglio Nazionale delle Ricerche (CNR). Biblioteca Centrale / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Sistema per trattamenti termici di materiali metallici ad alta temperatura in UHV

    No full text
    Consiglio Nazionale delle Ricerche (CNR). Biblioteca Centrale / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Underwater acoustic transducer calibration in the frame of European mast project MAS2 - CT94 - 0095

    No full text
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Glass transition under confinement-what can be learned from calorimetry

    No full text
    Calorimetry is an effective analytical tool to characterize the glass transition and phase transitions under confinement. Calorimetry offers a broad dynamic range regarding heating and cooling rates, including isothermal and temperature modulated operation. Today 12 orders of magnitude in scanning rate can be covered by combining different types of calorimeters. The broad dynamic range, comparable to dielectric spectroscopy, is especially of interest for the study of kinetically controlled processes like crystallization or glass transition. Accuracy of calorimetric measurements is not very high. Commonly it does not reach 0.1% and often accuracy is only a few percent. Nevertheless, calorimetry can reach high sensitivity and reproducibility. Both are of particular interest for the study of confined systems. Low addenda heat capacity chip calorimeters are capable to measure the step in heat capacity at the glass transition in nanometer thin films. The good reproducibility is used for the study of glass forming materials confined by nanometer sized structures, like porous glasses, semicrystalline structures, nanocomposites, phase separated block copolymers, etc. Calorimetry allows also for the frequency dependent measurement of complex heat capacity in a frequency range covering several orders of magnitude. Here I exclusively consider calorimetry and its application to glass transition in confined materials. In most cases calorimetry reveals only a weak dependence of the glass transition temperature on confinement as long as the confining dimensions are above 10 nm. Why these findings contradict many other studies applying other techniques to similar systems is still an unsolved problem of glass transition in confinement

    Glass transition under confinement-what can be learned from calorimetry

    No full text
    corecore