572 research outputs found

    Unresolved problems in superconductivity of CaC6

    Get PDF
    We discuss the current status of the theory of the "high-temperature" superconductivity in intercalated graphites YbC6 and CaC6. We emphasize that while the general picture of conventional, phonon-driven superconductivity has already emerged and is generally accepted, there are still interesting problems with this picture, such as weak-coupling regime inferred from specific heat suggesting coupling exclusively with high-energy carbon phonons coming in direct contradiction with the isotope effect measurements suggesting coupling exclusively with the low-energy intercalant modes. At the same time, the first principle calculations, while explaining Tc, contradict both of the experiments above by predicting equal coupling with both groups of phonons.Comment: Contribution to the Proceedings of the M2S Conference in Dresden, 200

    Theoretical search for Chevrel phase based thermoelectric materials

    Full text link
    We investigate the thermoelectric properties of some semiconducting Chevrel phases. Band structure calculations are used to compute thermopowers and to estimate of the effects of alloying and disorder on carrier mobility. Alloying on the Mo site with transition metals like Re, Ru or Tc to reach a semiconducting composition causes large changes in the electronic structure at the Fermi level. Such alloys are expected to have low carrier mobilities. Filling with transition metals was also found to be incompatible with high thermoelectric performance based on the calculated electronic structures. Filling with Zn, Cu, and especially with Li was found to be favorable. The calculated electronic structures of these filled Chevrel phases are consistent with low scattering of carriers by defects associated with the filling. We expect good mobility and high thermopower in materials with the composition close to (Li,Cu)4_4Mo6_6Se8_8, particularly when Li-rich, and recommend this system for experimental investigation.Comment: 4 two-column pages, 4 embedded ps figure

    Quasiparticles and c-axis coherent hopping in high T_c superconductors

    Full text link
    We study the problem of the low-energy quasiparticle spectrum of the extended t-J model and analyze the coherent hopping between weakly coupled planes described by this model. Starting with a two-band model describing the Cu-O planes and the unoccupied bands associated to the metallic atoms located in between the planes, we obtain effective hopping matrix elements describing the c-axis charge transfer. A computational study of these processes shows an anomalously large charge anisotropy for doping concentrations around and below the optimal doping.Comment: 4 pages, 3 figure

    Onset of magnetism in B2 transition metals aluminides

    Full text link
    Ab initio calculation results for the electronic structure of disordered bcc Fe(x)Al(1-x) (0.4<x<0.75), Co(x)Al(1-x) and Ni(x)Al(1-x) (x=0.4; 0.5; 0.6) alloys near the 1:1 stoichiometry, as well as of the ordered B2 (FeAl, CoAl, NiAl) phases with point defects are presented. The calculations were performed using the coherent potential approximation within the Korringa-Kohn-Rostoker method (KKR-CPA) for the disordered case and the tight-binding linear muffin-tin orbital (TB-LMTO) method for the intermetallic compounds. We studied in particular the onset of magnetism in Fe-Al and Co-Al systems as a function of the defect structure. We found the appearance of large local magnetic moments associated with the transition metal (TM) antisite defect in FeAl and CoAl compounds, in agreement with the experimental findings. Moreover, we found that any vacancies on both sublattices enhance the magnetic moments via reducing the charge transfer to a TM atom. Disordered Fe-Al alloys are ferromagnetically ordered for the whole range of composition studied, whereas Co-Al becomes magnetic only for Co concentration >0.5.Comment: 11 pages with 9 embedded postscript figures, to be published in Phys.Rev.

    Extreme Electron-Phonon Coupling in Boron-based Layered Superconductors

    Full text link
    The phonon-mode decomposition of the electron-phonon coupling in the MgB2-like system Li_{1-x}BC is explored using first principles calculations. It is found that the high temperature superconductivity of such systems results from extremely strong coupling to only ~2% of the phonon modes. Novel characteristics of E_2g branches include (1) ``mode lambda'' values of 25 and greater compared to a mean of ∼0.4\sim 0.4 for other modes, (2) a precipitous Kohn anomaly, and (3) E_2g phonon linewidths within a factor of ~2 of the frequency itself, indicating impending breakdown of linear electron-phonon theory. This behavior in borne out by recent inelastic x-ray scattering studies of MgB2 by Shukla et al.Comment: 4 two-column pages, 4 figures. Equations simplified. Figure 4 changed. Comparison with new data include

    SS Ari: a shallow-contact close binary system

    Full text link
    Two CCD epochs of light minimum and a complete R light curve of SS Ari are presented. The light curve obtained in 2007 was analyzed with the 2003 version of the W-D code. It is shown that SS Ari is a shallow contact binary system with a mass ratio q=3.25q=3.25 and a degree of contact factor f=9.4(\pm0.8%). A period investigation based on all available data shows that there may exist two distinct solutions about the assumed third body. One, assuming eccentric orbit of the third body and constant orbital period of the eclipsing pair results in a massive third body with M3=1.73M⊙M_3=1.73M_{\odot} and P_3=87.0yr.Onthecontrary,assumingcontinuousperiodchangesoftheeclipsingpairtheorbitalperiodoftertiaryis37.75yranditsmassisaboutyr. On the contrary, assuming continuous period changes of the eclipsing pair the orbital period of tertiary is 37.75yr and its mass is about 0.278M_{\odot}$. Both of the cases suggest the presence of an unseen third component in the system.Comment: 28 pages, 9 figures and 5 table

    Quasiparticle dynamics in ferromagnetic compounds of the Co-Fe and Ni-Fe systems

    Get PDF
    We report a theoretical study of the quasiparticle lifetime and the quasiparticle mean free path caused by inelastic electron-electron scattering in ferromagnetic compounds of the Co-Fe and Ni-Fe systems. The study is based on spin-polarized calculations, which are performed within the GWGW approximation for equiatomic and Co- and Ni-rich compounds, as well as for their constituents. We mainly focus on the spin asymmetry of the quasiparticle properties, which leads to the spin-filtering effect experimentally observed in spin-dependent transport of hot electrons and holes in the systems under study. By comparing with available experimental data on the attenuation length, we estimate the contribution of the inelastic mean free path to the latter.Comment: 10 pages, 10 figure

    S-matrix elements and off-shell tachyon action with non-abelian gauge symmetry

    Full text link
    We propose that there is a unique expansion for the string theory S-matrix elements of tachyons that corresponds to non-abelian tachyon action. For those S-matrix elements which, in their expansion, there are the Feynman amplitudes resulting from the non-abelian kinetic term, we give a prescription on how to find the expansion. The gauge invariant action is an α′\alpha' expanded action, and the tachyon mass mm which appears as coefficient of many different couplings, is arbitrary. We then analyze in details the S-matrix element of four tachyons and the S-matrix element of two tachyons and two gauge fields, in both bosonic and superstring theories, in favor of this proposal. In the superstring theory, the leading terms of the non-abelian gauge invariant couplings are in agreement with the symmetrised trace of the direct non-abelian generalization of the tachyonic Born-Infeld action in which the tachyon potential is consistent with V(T)=eπα′m2T2V(T)=e^{\pi\alpha' m^2T^2}. In the bosonic theory, on the other hand, the leading terms are those appear in superstring case as well as some other gauge invariant couplings which spoils the symmetrised trace prescription. These latter terms are zero in the abelian case.Comment: Latex, 27 pages, no figures,v4:change the introduction section, add some notes to clarify the idea, add reference

    Magnetic Properties of YBa_2Cu_3O_{7-\delta} in a self-consistent approach: Comparison with Quantum-Monte-Carlo Simulations and Experiments

    Full text link
    We analyze single-particle electronic and two-particle magnetic properties of the Hubbard model in the underdoped and optimally-doped regime of \YBCO by means of a modified version of the fluctuation-exchange approximation, which only includes particle-hole fluctuations. Comparison of our results with Quantum-Monte Carlo (QMC) calculations at relatively high temperatures (T∼1000KT\sim 1000 K) suggests to introduce a temperature renormalization in order to improve the agreement between the two methods at intermediate and large values of the interaction UU. We evaluate the temperature dependence of the spin-lattice relaxation time T1T_1 and of the spin-echo decay time T2GT_{2G} and compare it with the results of NMR measurements on an underdoped and an optimally doped \YBCO sample. For U/t=4.5U/t=4.5 it is possible to consistently adjust the parameters of the Hubbard model in order to have a good {\it semi-quantitative} description of this temperature dependence for temperatures larger than the spin gap as obtained from NMR measurements. We also discuss the case U/t∼8U/t\sim 8, which is more appropriate to describe magnetic and single-particle properties close to half-filling. However, for this larger value of U/tU/t the agreement with QMC as well as with experiments at finite doping is less satisfactory.Comment: Final version, to appear in Phys. Rev. B (sched. Feb. 99

    Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor

    Get PDF
    The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically below the monopole parameterization that describes the low Q^2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q^2 regime.Comment: 18 pages, 11 figure
    • …
    corecore