16 research outputs found

    Measurement of \Gamma_{ee}(J/\psi)*Br(J/\psi->e^+e^-) and \Gamma_{ee}(J/\psi)*Br(J/\psi->\mu^+\mu^-)

    Get PDF
    The products of the electron width of the J/\psi meson and the branching fraction of its decays to the lepton pairs were measured using data from the KEDR experiment at the VEPP-4M electron-positron collider. The results are \Gamma_{ee}(J/\psi)*Br(J/\psi->e^+e^-)=(0.3323\pm0.0064\pm0.0048) keV, \Gamma_{ee}(J/\psi)*Br(J/\psi->\mu^+\mu^-)=(0.3318\pm0.0052\pm0.0063) keV. Their combinations \Gamma_{ee}\times(\Gamma_{ee}+\Gamma_{\mu\mu})/\Gamma=(0.6641\pm0.0082\pm0.0100) keV, \Gamma_{ee}/\Gamma_{\mu\mu}=1.002\pm0.021\pm0.013 can be used to improve theaccuracy of the leptonic and full widths and test leptonic universality. Assuming e\mu universality and using the world average value of the lepton branching fraction, we also determine the leptonic \Gamma_{ll}=5.59\pm0.12 keV and total \Gamma=94.1\pm2.7 keV widths of the J/\psi meson.Comment: 7 pages, 6 figure

    Search for narrow resonances in e+ e- annihilation between 1.85 and 3.1 GeV with the KEDR Detector

    Full text link
    We report results of a search for narrow resonances in e+ e- annihilation at center-of-mass energies between 1.85 and 3.1 GeV performed with the KEDR detector at the VEPP-4M e+ e- collider. The upper limit on the leptonic width of a narrow resonance Gamma(R -> ee) Br(R -> hadr) < 120 eV has been obtained (at 90 % C.L.)

    Measurement of main parameters of the \psi(2S) resonance

    Get PDF
    A high-precision determination of the main parameters of the \psi(2S) resonance has been performed with the KEDR detector at the VEPP-4M e^{+}e^{-} collider in three scans of the \psi(2S) -- \psi(3770) energy range. Fitting the energy dependence of the multihadron cross section in the vicinity of the \psi(2S) we obtained the mass value M = 3686.114 +- 0.007 +- 0.011 ^{+0.002}_{-0.012} MeV and the product of the electron partial width by the branching fraction into hadrons \Gamma_{ee}*B_{h} = 2.233 +- 0.015 +- 0.037 +- 0.020 keV. The third error quoted is an estimate of the model dependence of the result due to assumptions on the interference effects in the cross section of the single-photon e^{+}e^{-} annihilation to hadrons explicitly considered in this work. Implicitly, the same assumptions were employed to obtain the charmonium leptonic width and the absolute branching fractions in many experiments. Using the result presented and the world average values of the electron and hadron branching fractions, one obtains the electron partial width and the total width of the \psi(2S): \Gamma_{ee} =2.282 +- 0.015 +- 0.038 +- 0.021 keV, \Gamma = 296 +- 2 +- 8 +- 3 keV. These results are consistent with and more than two times more precise than any of the previous experiments

    ACETAZOLAMIDE IN PEDIATRIC NEUROLOGY: HISTORY AND PERSPECTIVE OF CILNICAL USE

    No full text
    Resume the up tob date pharmacological and clinical findings have revealed new opportunities for the use of known for a long time pharmaceutical agents in various fields of practical medicine. For more than 50 years acetozolamide, systemic carbonic anhydrase inhibitor, has been used in neurology to correct liquorodynamic disorders. High clinical efficacy and good tolerb ability in longbterm use has made acetazolamide an essential agent in pediatric neurology, along with this the true therapeutic application of acetazolamide is much wider than it was traditionally thought. This review analyzes the experience of administration of the drug in different branches of pediatric neurology, including those where acetazolamide has been traditionally used along with novel applications to administration of the drug in children.Key words: acetozolamide, carboanhydrase, children, sleep apnea syndrome, glaucoma, hydrocephaly, episodic ataxia type II, migraine, intracranial idiopathic benign hemiplegic hypertension

    Lynch Syndrome Germline Mutations in Breast Cancer: Next Generation Sequencing Case-Control Study of 1,263 Participants

    No full text
    © Copyright © 2020 Nikitin, Chudakova, Enikeev, Sakaeva, Druzhkov, Shigapova, Brovkina, Shagimardanova, Gusev and Gordiev. Genome instability—the increased tendency of acquiring mutations in the genome and ability of a cell to tolerate high mutation burden—is one of the drivers of cancer. Genome instability results from many causes including defects in DNA repair systems. Previously, it has been shown that germline pathogenic mutations in DNA Mismatch Repair (MMR) pathway cause cancer-predisposing Lynch Syndrome. We proposed that Lynch Syndrome-related germline mutations (LS-mutations) are associated with breast cancer (BC). In this study, we performed Targeted Next-Generation Sequencing of MMR pathway genes MLH1, MSH2, MSH6, EPCAM, and PMS2 in a cohort of 711 patients with hereditary BC, 60 patients with sporadic BC, and 492 healthy donors. Sixty-nine patients (9.7%) with hereditary BC harbored at least one germline mutation in the MMR pathway genes, of them 32 patients (4.5%) harbored mutations in MMR pathway genes which we define as pathogenic or likely pathogenic, and of them 26 patients (3.6%) did not have any pathogenic mutations in DDR pathway genes, compared to two mutations in MMR pathway genes (0.4%) detected in a group of 492 healthy donors [p = 0.00013, OR = 8.9 (CI 95% 2.2–78.4)]. Our study demonstrates that LS-mutations are present in patients with hereditary BC more frequently than in healthy donors, and that there is an association of hereditary BC and mutations c.1321G>A in MLH1, c.260C>G and c.2178G>C in MSH2, c.3217C>T in MSH6, c.1268C>G and c.86G>C in PMS2 genes. This finding provides a rationale for including pathogenic LS-mutations into genetic counseling tests for patients with hereditary BC

    Iron metabolic pathways in the processes of sponge plasticity

    No full text
    © 2020 Finoshin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The ability to regulate oxygen consumption evolved in ancestral animals and is intrinsically linked to iron metabolism. The iron pathways have been intensively studied in mammals, whereas data on distant invertebrates are limited. Sea sponges represent the oldest animal phylum and have unique structural plasticity and capacity to reaggregate after complete dissociation. We studied iron metabolic factors and their expression during reaggregation in the White Sea cold-water sponges Halichondria panicea and Halisarca dujardini. De novo transcriptomes were assembled using RNA-Seq data, and evolutionary trends were analyzed with bioinformatic tools. Differential expression during reaggregation was studied for H. dujardini. Enzymes of the heme biosynthesis pathway and transport globins, neuroglobin (NGB) and androglobin (ADGB), were identified in sponges. The globins mutate at higher evolutionary rates than the heme synthesis enzymes. Highly conserved iron-regulatory protein 1 (IRP1) presumably interacts with the iron-responsive elements (IREs) found in mRNAs of ferritin (FTH1) and a putative transferrin receptor NAALAD2. The reaggregation process is accompanied by increased expression of IRP1, the antiapoptotic factor BCL2, the inflammation factor NFκB (p65), FTH1 and NGB, as well as by an increase in mitochondrial density. Our data indicate a complex mechanism of iron regulation in sponge structural plasticity and help to better understand general mechanisms of morphogenetic processes in multicellular species

    Structure of Neuroglobin from Cold-Water Sponge Halisarca dujardinii

    No full text
    © 2020, Pleiades Publishing, Inc. Abstract: The iron-containing protein neuroglobin (Ngb) involved in the transport of oxygen is generally considered the precursor of all animal globins. In this report, we studied the structure of Ngb of the cold-water sponge Halisarca dujardinii. In sponges, the oldest multicellular organisms, the Ngb gene contains three introns. In contrast to human Ngb, its promoter contains a TATA-box, rather than CG-rich motifs. In sponges, Ngb consists of 169 amino acids showing rather low similarity with its mammalian orthologues. It lacks Glu and Arg residues in positions required for prevention of hypoxia-related apoptosis. Nevertheless, Ngb contains both proximal and distal conserved heme-biding histidines. The primary structure of H. dujardinii neuroglobin predicted by sequencing was confirmed by mass-spectrometry analysis of recombinant Ngb expressed in E. coli. The high level of Ngb expression in sponge tissues suggests its possible involvement in the gas metabolism and presumably in other key metabolic processes in H. dujardinii

    Structure of Neuroglobin from Cold-Water Sponge Halisarca dujardinii

    No full text
    The iron-containing protein neuroglobin (Ngb) involved in the transport of oxygen is generally considered the precursor of all animal globins. In this report, we studied the structure of Ngb of the cold-water sponge Halisarca dujardinii. In sponges, the oldest multicellular organisms, the Ngb gene contains three introns. In contrast to human Ngb, its promoter contains a TATA-box, rather than CG-rich motifs. In sponges, Ngb consists of 169 amino acids showing rather low similarity with its mammalian orthologues. It lacks Glu and Arg residues in positions required for prevention of hypoxia-related apoptosis. Nevertheless, Ngb contains both proximal and distal conserved heme-biding histidines. The primary structure of H. dujardinii neuroglobin predicted by sequencing was confirmed by mass-spectrometry analysis of recombinant Ngb expressed in E. coli. The high level of Ngb expression in sponge tissues suggests its possible involvement in the gas metabolism and presumably in other key metabolic processes in H. dujardinii

    Conservative and atypical ferritins of sponges

    No full text
    Ferritins comprise a conservative family of proteins found in all species and play an essential role in resistance to redox stress, immune response, and cell differentiation. Sponges (Porifera) are the oldest Metazoa that show unique plasticity and regenerative potential. Here, we characterize the ferritins of two cold-water sponges using proteomics, spectral microscopy, and bioinformatic analysis. The recently duplicated conservative HdF1a/b and atypical HdF2 genes were found in the Halisarca dujardini genome. Multiple related transcripts of HpF1 were identified in the Halichondria panicea transcriptome. Expression of HdF1a/b was much higher than that of HdF2 in all annual seasons and regulated differently during the sponge dissociation/reaggregation. The presence of the MRE and HRE motifs in the HdF1 and HdF2 promotor regions and the IRE motif in mRNAs of HdF1 and HpF indicates that sponge ferritins expression depends on the cellular iron and oxygen levels. The gel electrophoresis combined with specific staining and mass spectrometry confirmed the presence of ferric ions and ferritins in multi-subunit complexes. The 3D modeling predicts the iron-binding capacity of HdF1 and HpF1 at the ferroxidase center and the absence of iron-binding in atypical HdF2. Interestingly, atypical ferritins lacking iron-binding capacity were found in genomes of many invertebrate species. Their function deserves further research
    corecore