2 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    An efficient method of addressing ectopic beats: new insight into data preprocessing of heart rate variability analysis*

    No full text
    Heart rate variability (HRV) analysis is affected by ectopic beats. An efficient method was proposed to deal with the ectopic beats. The method was based on trend correlation of the heart timing signal. Predictor of R-R interval (RRI) value at ectopic beat time was constructed by the weight calculation and the slope estimation of preceding normal RRI. The type of ectopic beat was detected and replaced by the predictor of RRI. The performance of the simulated signal after ectopic correction was tested by the standard value using power spectrum density (PSD) estimation, whereas the results of clinical data with ectopic beats were compared with the adjacent ectopic-free data. The result showed the frequency indexes after ectopy corrected had less error than other methods with the test of simulated signal and clinical data. It indicated our method could improve the PSD estimation in HRV analysis. The method had advantages of high accuracy and real time properties to recover the sinus node modulation
    corecore