12,422 research outputs found

    Relating U(N)xU(N) to SU(N)xSU(N) Chern-Simons Membrane theories

    Get PDF
    By integrating out the U(1)_B gauge field, we show that the U(n)xU(n) ABJM theory at level k is equivalent to a Z_k identification of the (SU(n)xSU(n))/Z_n Chern-Simons theory, but only when n and k are coprime. As a consequence, the k=1 ABJM model for two M2-branes in R^8 can be identified with the N=8 (SU(2)xSU(2))/Z_2 theory. We also conjecture that the U(2)xU(2) ABJM model at k=2 is equivalent to the N=8 SU(2)xSU(2)-theory.Comment: 16 pages, Latex; v2: references added; v3: Clarifications adde

    Reconstruction of plasma density profiles by measuring spectra of radiation emitted from oscillating plasma dipoles

    Get PDF
    We suggest a new method for characterising non-uniform density distributions of plasma by measuring the spectra of radiation emitted from a localised plasma dipole oscillator excited by colliding electromagnetic pulses. The density distribution can be determined by scanning the collision point in space. Two-dimensional particle-in-cell simulations demonstrate the reconstruction of linear and nonlinear density profiles corresponding to laser-produced plasma. The method can be applied to a wide range of plasma, including fusion and low temperature plasmas. It overcomes many of the disadvantages of existing methods that only yield average densities along the path of probe pulses, such as interferometry and spectroscopy

    Duality between N=5 and N=6 Chern-Simons matter theory

    Full text link
    We provide evidences for the duality between N=6{\cal N}=6 U(M)4×U(N)4U(M)_{4} \times U(N)_{-4} Chern-Simons matter theory and N=5{\cal N}=5 O(M^)2×USp(2N^)1O(\hat{M})_{2} \times USp(2\hat{N})_{-1} theory for a suitable M^,N^\hat{M},\hat{N} by working out the superconformal index, which shows perfect matching. For N=5{\cal N}=5 theories, we show that supersymmetry is enhanced to N=6{\cal N}=6 by explicitly constructing monopole operators filling in SO(6)RSO(6)_R RR-currents. Finally we work out the large NN index of O(2N)2k×USp(2N)kO(2N)_{2k} \times USp(2N)_{-k} and show that it exactly matches with the gravity index on AdS4×S7/DkAdS_4 \times S^7/D_k, which further provides additional evidence for the duality between the N=5{\cal N}=5 and N=6{\cal N}=6 theory for k=1k=1Comment: 15 pages; references adde

    SPH Simulations of Galactic Gaseous Disk with Bar: Distribution and Kinematic Structure of Molecular Clouds toward the Galactic Center

    Get PDF
    We have performed Smoothed Particle Hydrodynamic (SPH) simulations to study the response of molecular clouds in the Galactic disk to a rotating bar and their subsequent evolution in the Galactic Center (GC) region. The Galactic potential in our models is contributed by three axisymmetric components (massive halo, exponential disk, compact bulge) and a non-axisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. Some noticeable features such as an elliptical outer ring, spiral arms, a gas-depletion region, and a central concentration have been developed due to the influence of the bar. The rotating bar induces non-circular motions of the SPH particles, but hydrodynamic collisions tend to suppress the random components of the velocity. The velocity field of the SPH particles is consistent with the kinematics of molecular clouds observed in HCN (1-0) transition; these clouds are thought to be very dense clouds. However, the l-v diagram of the clouds traced by CO is quite different from that of our SPH simulation, being more similar to that obtained from simulations using collisionless particles. The lvl-v diagram of a mixture of collisional and collisionless particles gives better reproduction of the kinematic structures of the GC clouds observed in the CO line. The fact that the kinematics of HCN clouds can be reproduced by the SPH particles suggests that the dense clouds in the GC are formed via cloud collisions induced by rotating bar.Comment: 31 pages, 10 pigures, accepted for publication in Ap

    Supersymmetry enhancement by monopole operators

    Get PDF
    We describe a method which allows one to study hidden symmetries in a large class of strongly coupled supersymmetric gauge theories in three dimensions. We apply this method to the ABJM theory and to the infrared limit of N=4 SQCD with adjoint and fundamental matter. We show that the U(N) ABJM model with Chern-Simons level k=1 or k=2 has hidden N=8 supersymmetry. Hidden supersymmetry is also shown to occur in N=4 d=3 SQCD with one fundamental and one adjoint hypermultiplet. The latter theory, as well as the U(N) ABJM theory at k=1, are shown to have a decoupled free sector. This provides evidence that both models are dual to the infrared limit of N=8 U(N) super-Yang-Mills theory.Comment: 29 pages, late

    Interaction between M2-branes and Bulk Form Fields

    Full text link
    We construct the interaction terms between the world-volume fields of multiple M2-branes and the 3- and 6-form fields in the context of ABJM theory with U(NN)×\timesU(NN) gauge symmetry. A consistency check is made in the simplest case of a single M2-brane, i.e, our construction matches the known effective action of M2-brane coupled to antisymmetric 3-form field. We show that when dimensionally reduced, our couplings coincide with the effective action of D2-branes coupled to R-R 3- and 5-form fields in type IIA string theory. We also comment on the relation between a coupling with a specific 6-form field configuration and the supersymmetry preserving mass deformation in ABJM theory.Comment: 30 pages, version to appear in JHE

    Index for Three Dimensional Superconformal Field Theories and Its Applications

    Full text link
    We review aspects of superconformal indices in three dimension. Three dimensional superconformal indices can be exactly computed by using localization method including monopole contribution, and can be applied to provide evidences for mirror duality, AdS_4/CFT_3 correspondence and global symmetry enhancement of strongly coupled gauge theories. After reviewing, we discuss the possibility of global symmetry enhancement in a finite rank of gauge group.Comment: 14 pages, Proceedings of the Seventh International Conference Quantum Theory and Symmetries (QTS-7) in Prague, Czech Republic, August, 2011; v2: minor modifications, discussion of supersymmetry enhancement of abelian ABJM theory by using an index were adde

    New and old N=8 superconformal field theories in three dimensions

    Full text link
    We show that an infinite family of N=6 d=3 superconformal Chern-Simons-matter theories has hidden N=8 superconformal symmetry and hidden parity on the quantum level. This family of theories is different from the one found by Aharony, Bergman, Jafferis and Maldacena, as well as from the theories constructed by Bagger and Lambert, and Gustavsson. We also test several conjectural dualities between BLG theories and ABJ theories by comparing superconformal indices of these theories.Comment: 16 pages, late

    Negative modes in the four-dimensional stringy wormholes

    Get PDF
    We study the Giddings-Strominger wormholes in string theories. We found negative modes among O(4)-symmetric fluctuations about the non-singular wormhole background. Hence the stringy wormhole contribution to the euclidean functional integral is purely imaginary. This means that the stringy wormhole is a bounce (not an instanton) and describes the nucleation and growth of wormholes in the Minkowski spacetime.Comment: 12 pages 2 figures, RevTe
    corecore