16,825 research outputs found

    Simulation of low energy charged particle beams

    Get PDF
    Low energy particle beams pose specific challenges to simulation codes and experiments alike as a number of effects become important that can often be neglected at higher beam energies, including e.g. space-charge or fringe field effects. The optimization of low energy charged particle beam transport through arbitrary electromagnetic fields is the purpose of a code aimed at tracking low-energy particles from the sub-eV to the MeV energy range with high precision. The code is based on Matlab/Simulink and able to use 3-dimensional field maps from either Finite Elements Method (FEM) solvers, such as Comsol, OPERA 3D or CST particle studio, fields calculated by the code itself, or field maps from measurements. This paper describes the code structure and presents its performance limitations. It also gives a summary of results obtained from beam dynamics simulations of cyclotrons injection systems, storage ring extraction systems, electrostatic and magnetic beamlines, as well as from photocathode optimization studies

    Finite-Temperature Fractional D2-Branes and the Deconfinement Transition in 2+1 Dimensions

    Full text link
    The supergravity dual to N regular and M fractional D2-branes on the cone over \mathbb{CP}^3 has a naked singularity in the infrared. One can resolve this singularity and obtain a regular fractional D2-brane solution dual to a confining 2+1 dimensional N = 1 supersymmetric field theory. The confining vacuum of this theory is described by the solution of Cvetic, Gibbons, Lu and Pope. In this paper, we explore the alternative possibility for resolving the singularity - the creation of a regular horizon. The black-hole solution we find corresponds to the deconfined phase of this dual gauge theory in three dimensions. This solution is derived in perturbation theory in the number of fractional branes. We argue that there is a first-order deconfinement transition. Connections to Chern--Simons matter theories, the ABJM proposal and fractional M2-branes are presented.Comment: v3: analytic solutions are expose

    Matrix Models for Supersymmetric Chern-Simons Theories with an ADE Classification

    Full text link
    We consider N=3 supersymmetric Chern-Simons (CS) theories that contain product U(N) gauge groups and bifundamental matter fields. Using the matrix model of Kapustin, Willett and Yaakov, we examine the Euclidean partition function of these theories on an S^3 in the large N limit. We show that the only such CS theories for which the long range forces between the eigenvalues cancel have quivers which are in one-to-one correspondence with the simply laced affine Dynkin diagrams. As the A_n series was studied in detail before, in this paper we compute the partition function for the D_4 quiver. The D_4 example gives further evidence for a conjecture that the saddle point eigenvalue distribution is determined by the distribution of gauge invariant chiral operators. We also see that the partition function is invariant under a generalized Seiberg duality for CS theories.Comment: 20 pages, 3 figures; v2 refs added; v3 conventions in figure 3 altered, version to appear in JHE

    Elevated plasma homocysteine is associated with ischaemic heart disease in Hong Kong Chinese

    Get PDF
    published_or_final_versio

    Multiplex cytokine analysis of dermal interstitial blister fluid defines local disease mechanisms in systemic sclerosis.

    Get PDF
    Clinical diversity in systemic sclerosis (SSc) reflects multifaceted pathogenesis and the effect of key growth factors or cytokines operating within a disease-specific microenvironment. Dermal interstitial fluid sampling offers the potential to examine local mechanisms and identify proteins expressed within lesional tissue. We used multiplex cytokine analysis to profile the inflammatory and immune activity in the lesions of SSc patients

    Smooth tensionful higher-codimensional brane worlds with bulk and brane form fields

    Get PDF
    Completely regular tensionful codimension-n brane world solutions are discussed, where the core of the brane is chosen to be a thin codimension-(n-1) shell in an infinite volume flat bulk, and an Einstein-Hilbert term localized on the brane is included (Dvali-Gabadadze-Porrati models). In order to support such localized sources we enrich the vacuum structure of the brane by the inclusion of localized form fields. We find that phenomenological constraints on the size of the internal core seem to impose an upper bound to the brane tension. Finite transverse-volume smooth solutions are also discussed.Comment: 1+14 pages, 2 figures; section 2.3 improved, typos corrected and references added. Published versio

    Holographic Superconductors from Einstein-Maxwell-Dilaton Gravity

    Full text link
    We construct holographic superconductors from Einstein-Maxwell-dilaton gravity in 3+1 dimensions with two adjustable couplings Îą\alpha and the charge qq carried by the scalar field. For the values of Îą\alpha and qq we consider, there is always a critical temperature at which a second order phase transition occurs between a hairy black hole and the AdS RN black hole in the canonical ensemble, which can be identified with the superconducting phase transition of the dual field theory. We calculate the electric conductivity of the dual superconductor and find that for the values of Îą\alpha and qq where Îą/q\alpha/q is small the dual superconductor has similar properties to the minimal model, while for the values of Îą\alpha and qq where Îą/q\alpha/q is large enough, the electric conductivity of the dual superconductor exhibits novel properties at low frequencies where it shows a "Drude Peak" in the real part of the conductivity.Comment: 25 pages, 13 figures; v2, typos corrected; v3, refs added, to appear in JHE

    Bulk Axions, Brane Back-reaction and Fluxes

    Full text link
    Extra-dimensional models can involve bulk pseudo-Goldstone bosons (pGBs) whose shift symmetry is explicitly broken only by physics localized on branes. Reliable calculation of their low-energy potential is often difficult because it requires details of the stabilization of the extra dimensions. In rugby ball solutions, for which two compact extra dimensions are stabilized in the presence of only positive-tension brane sources, the effects of brane back-reaction can be computed explicitly. This allows the calculation of the shape of the low-energy pGB potential and response of the extra dimensional geometry as a function of the perturbing brane properties. If the pGB-dependence is a small part of the total brane tension a very general analysis is possible, permitting an exploration of how the system responds to frustration when the two branes disagree on what the proper scalar vacuum should be. We show how the low-energy potential is given by the sum of brane tensions (in agreement with common lore) when only the brane tensions couple to the pGB. We also show how a direct brane coupling to the flux stabilizing the extra dimensions corrects this result in a way that does not simply amount to the contribution of the flux to the brane tensions. We calculate the mass of the would-be zero mode, and briefly describe several potential applications, including a brane realization of `natural inflation,' and a dynamical mechanism for suppressing the couplings of the pGB to matter localized on the branes. Since the scalar can be light enough to be relevant to precision tests of gravity (in a technically natural way) this mechanism can be relevant to evading phenomenological bounds.Comment: 36 pages, JHEP styl
    • …
    corecore