316 research outputs found
Magnetic-Field Induced Quantum Critical Point in YbRhSi
We report low-temperature calorimetric, magnetic and resistivity measurements
on the antiferromagnetic (AF) heavy-fermion metal YbRhSi ( 70
mK) as a function of magnetic field . While for fields exceeding the
critical value at which the low temperature resistivity
shows an dependence, a divergence of upon
reducing to suggests singular scattering at the whole Fermi
surface and a divergence of the heavy quasiparticle mass. The observations are
interpreted in terms of a new type of quantum critical point separating a
weakly AF ordered from a weakly polarized heavy Landau-Fermi liquid state.Comment: accepted for publication in Phys. Rev. Let
Spin dynamics in a structurally ordered non-Fermi liquid compound: YbRh_2Si_2
Muon spin relaxation (muSR) experiments have been carried out at low
temperatures in the non-Fermi-liquid heavy-fermion compound YbRh_2Si_2. The
longitudinal-field muSR relaxation function is exponential, indicative that the
dynamic spin fluctuations are homogeneous. The relaxation rate 1/T_1 varies
with applied field as H^{-y}, y = 1.0 \pm 0.1, which implies a scaling law of
the form \chi''(\omega) \propto \omega^{-y} f(\omega/T), \lim_{x\to0} f(x) = x
for the dynamic spin susceptibility.Comment: 5 pages, 2 figures. To be published in proceedings of musr2002
(Physica B
Coexistence of Superconductivity and Antiferromagnetism in Heavy-Fermion Superconductor CeCu_{2}(Si_{1-x}Ge_{x})_{2} Probed by Cu-NQR --A Test Case for the SO(5) Theory--
We report on the basis of Cu-NQR measurements that superconductivity (SC) and
antiferromagnetism (AF) coexist on a microscopic level in
CeCu_{2}(Si_{1-x}Ge_{x})_{2}, once a tiny amount of 1%Ge (x = 0.01) is
substituted for Si. This coexistence arises because Ge substitution expands the
unit-cell volume in nearly homogeneous CeCu2Si2 where the SC coexists with
slowly fluctuating magnetic waves. We propose that the underlying exotic phases
of SC and AF in either nearly homogeneous or slightly Ge substituted CeCu2Si2
are accountable based on the SO(5) theory that unifies the SC and AF. We
suggest that the mechanism of the SC and AF is common in CeCu2Si2.Comment: 7 pages with 6 figures embedded in the text. To be published in J.
Phys. Condens. Matter, 200
The break up of heavy electrons at a quantum critical point
The point at absolute zero where matter becomes unstable to new forms of
order is called a quantum critical point (QCP). The quantum fluctuations
between order and disorder that develop at this point induce profound
transformations in the finite temperature electronic properties of the
material. Magnetic fields are ideal for tuning a material as close as possible
to a QCP, where the most intense effects of criticality can be studied. A
previous study on theheavy-electron material found that near a
field-induced quantum critical point electrons move ever more slowly and
scatter off one-another with ever increasing probability, as indicated by a
divergence to infinity of the electron effective mass and cross-section. These
studies could not shed light on whether these properties were an artifact of
the applied field, or a more general feature of field-free QCPs. Here we report
that when Germanium-doped is tuned away from a chemically induced
quantum critical point by magnetic fields there is a universal behavior in the
temperature dependence of the specific heat and resistivity: the characteristic
kinetic energy of electrons is directly proportional to the strength of the
applied field. We infer that all ballistic motion of electrons vanishes at a
QCP, forming a new class of conductor in which individual electrons decay into
collective current carrying motions of the electron fluid.Comment: Pdf files of article available at
http://www.physics.rutgers.edu/~coleman/online/breakup.pdf, pdf file of news
and views article available at
http://www.physics.rutgers.edu/~coleman/online/nvbreakup.pd
Hall-effect evolution across a heavy-fermion quantum critical point
A quantum critical point (QCP) develops in a material at absolute zero when a
new form of order smoothly emerges in its ground state. QCPs are of great
current interest because of their singular ability to influence the finite
temperature properties of materials. Recently, heavy-fermion metals have played
a key role in the study of antiferromagnetic QCPs. To accommodate the heavy
electrons, the Fermi surface of the heavy-fermion paramagnet is larger than
that of an antiferromagnet. An important unsolved question concerns whether the
Fermi surface transformation at the QCP develops gradually, as expected if the
magnetism is of spin density wave (SDW) type, or suddenly as expected if the
heavy electrons are abruptly localized by magnetism. Here we report
measurements of the low-temperature Hall coefficient () - a measure of the
Fermi surface volume - in the heavy-fermion metal YbRh2Si2 upon field-tuning it
from an antiferromagnetic to a paramagnetic state. undergoes an
increasingly rapid change near the QCP as the temperature is lowered,
extrapolating to a sudden jump in the zero temperature limit. We interpret
these results in terms of a collapse of the large Fermi surface and of the
heavy-fermion state itself precisely at the QCP.Comment: 20 pages, 3 figures; to appear in Natur
Thermoelectric Behaviour Near Magnetic Quantum Critical Point
We use the coupled 2d-spin-3d-fermion model proposed by Rosch {\sl et. al.}
(Phys. Rev. Lett. {\bf 79}, 159 (1997)) to study the thermoelectric behaviour
of a heavy fermion compound when it is close to an antiferromagnetic quantum
critical point. When the low energy spin fluctuations are quasi two
dimensional, as has been observed in and , with a typical 2d ordering wavevector and 3d Fermi
surface, the ``hot'' regions on the Fermi surface have a finite area. Due to
enhanced scattering with the nearly critical spin fluctuations, the electrons
in the hot region are strongly renormalized. We argue that there is an
intermediate energy scale where the qualitative aspects of the renormalized hot
electrons are captured by a weak-coupling perturbative calculation. Our
examination of the electron self energy shows that the entropy carried by the
hot electrons is larger than usual. This accounts for the anomalous logarithmic
temperature dependence of specific heat observed in these materials. We show
that the same mechanism produces logarithmic temperature dependence in
thermopower. This has been observed in . We
expect to see the same behaviour from future experiments on .Comment: RevTex, two-column, 7 pages, 2 figure
Why could Electron Spin Resonance be observed in a heavy fermion Kondo lattice?
We develop a theoretical basis for understanding the spin relaxation
processes in Kondo lattice systems with heavy fermions as experimentally
observed by electron spin resonance (ESR). The Kondo effect leads to a common
energy scale that regulates a logarithmic divergence of different spin kinetic
coefficients and supports a collective spin motion of the Kondo ions with
conduction electrons. We find that the relaxation rate of a collective spin
mode is greatly reduced due to a mutual cancelation of all the divergent
contributions even in the case of the strongly anisotropic Kondo interaction.
The contribution to the ESR linewidth caused by the local magnetic field
distribution is subject to motional narrowing supported by ferromagnetic
correlations. The developed theoretical model successfully explains the ESR
data of YbRh2Si2 in terms of their dependence on temperature and magnetic
field.Comment: 5pages, 1 Figur
Local quantum critical point and non-Fermi liquid properties
Quantum criticality provides a means to understand the apparent non-Fermi
liquid phenomena in correlated electron systems. How to properly describe
quantum critical points in electronic systems has however been poorly
understood. The issues have become particularly well-defined due to recent
experiments in heavy fermion metals, in which quantum critical points have been
explicitly identified. In this paper, I summarize some recent theoretical work
on the subject, with an emphasis on the notion of ``local quantum
criticality''. I describe the microscopic work based on an extended dynamical
mean field theory, as well as Ginzburg-Landau arguments for the robustness of
the local quantum critical point beyond the microscopics. I also present the
consequences of this picture on the inelastic neutron scattering, NMR, Fermi
surface properties and Hall coefficient, and compare them with the available
experiments. Some analogies with the Mott transition phenomena are also noted.Comment: 7 pages, 1 figure; references updated according to the published
versio
Temperature dependence of the Kondo resonance and its satellites in CeCu_2Si_2
We present high-resolution photoemission spectroscopy studies on the Kondo
resonance of the strongly-correlated Ce system CeCuSi. Exploiting the
thermal broadening of the Fermi edge we analyze position, spectral weight, and
temperature dependence of the low-energy 4f spectral features, whose major
weight lies above the Fermi level . We also present theoretical
predictions based on the single-impurity Anderson model using an extended
non-crossing approximation (NCA), including all spin-orbit and crystal field
splittings of the 4f states. The excellent agreement between theory and
experiment provides strong evidence that the spectral properties of
CeCuSi can be described by single-impurity Kondo physics down to K.Comment: 4 pages, 3 figure
- …
