1,035 research outputs found
Essential Constraints of Edge-Constrained Proximity Graphs
Given a plane forest of points, we find the minimum
set of edges such that the edge-constrained minimum spanning
tree over the set of vertices and the set of constraints contains .
We present an -time algorithm that solves this problem. We
generalize this to other proximity graphs in the constraint setting, such as
the relative neighbourhood graph, Gabriel graph, -skeleton and Delaunay
triangulation. We present an algorithm that identifies the minimum set
of edges of a given plane graph such that for , where is the
constraint -skeleton over the set of vertices and the set of
constraints. The running time of our algorithm is , provided that the
constrained Delaunay triangulation of is given.Comment: 24 pages, 22 figures. A preliminary version of this paper appeared in
the Proceedings of 27th International Workshop, IWOCA 2016, Helsinki,
Finland. It was published by Springer in the Lecture Notes in Computer
Science (LNCS) serie
X-ray photoelectron emission microscopy in combination with x-ray magnetic circular dichroism investigation of size effects on field-induced N\'eel-cap reversal
X-ray photoelectron emission microscopy in combination with x-ray magnetic
circular dichroism is used to investigate the influence of an applied magnetic
field on N\'eel caps (i.e., surface terminations of asymmetric Bloch walls).
Self-assembled micron-sized Fe(110) dots displaying a moderate distribution of
size and aspect ratios serve as model objects. Investigations of remanent
states after application of an applied field along the direction of N\'eel-cap
magnetization give clear evidence for the magnetization reversal of the N\'eel
caps around 120 mT, with a 20 mT dispersion. No clear correlation could be
found between the value of the reversal field and geometrical features of the
dots
Demonstration of an optical-coherence converter
Studying the coherence of an optical field is typically compartmentalized
with respect to its different optical degrees of freedom (DoFs) -- spatial,
temporal, and polarization. Although this traditional approach succeeds when
the DoFs are uncoupled, it fails at capturing key features of the field's
coherence if the DOFs are indeed correlated -- a situation that arises often.
By viewing coherence as a `resource' that can be shared among the DoFs, it
becomes possible to convert the entropy associated with the fluctuations in one
DoF to another DoF that is initially fluctuation-free. Here, we verify
experimentally that coherence can indeed be reversibly exchanged -- without
loss of energy -- between polarization and the spatial DoF of a partially
coherent field. Starting from a linearly polarized spatially incoherent field
-- one that produces no spatial interference fringes -- we obtain a spatially
coherent field that is unpolarized. By reallocating the entropy to
polarization, the field becomes invariant with regards to the action of a
polarization scrambler, thus suggesting a strategy for avoiding the deleterious
effects of a randomizing system on a DoF of the optical field.Comment: 7 pages; 6 figure
Third type of domain wall in soft magnetic nanostrips
Magnetic domain walls (DWs) in nanostructures are low-dimensional objects
that separate regions with uniform magnetisation. Since they can have different
shapes and widths, DWs are an exciting playground for fundamental research, and
became in the past years the subject of intense works, mainly focused on
controlling, manipulating, and moving their internal magnetic configuration. In
nanostrips with in-plane magnetisation, two DWs have been identified: in thin
and narrow strips, transverse walls are energetically favored, while in thicker
and wider strips vortex walls have lower energy. The associated phase diagram
is now well established and often used to predict the low-energy magnetic
configuration in a given magnetic nanostructure. However, besides the
transverse and vortex walls, we find numerically that another type of wall
exists in permalloy nanostrips. This third type of DW is characterised by a
three-dimensional, flux closure micromagnetic structure with an unusual length
and three internal degrees of freedom. Magnetic imaging on
lithographically-patterned permalloy nanostrips confirms these predictions and
shows that these DWs can be moved with an external magnetic field of about 1mT.
An extended phase diagram describing the regions of stability of all known
types of DWs in permalloy nanostrips is provided.Comment: 19 pages, 7 figure
Angular-dependence of magnetization switching for a multi-domain dot: experiment and simulation
We have measured the in-plane angular variation of nucleation and
annihilation fields of a multi-domain magnetic single dot with a microsquid.
The dots are Fe/Mo(110) self-assembled in UHV, with sub-micron size and a
hexagonal shape. The angular variations were quantitatively reproduced by
micromagnetic simulations. Discontinuities in the variations are observed, and
shown to result from bifurcations related to the interplay of the non-uniform
magnetization state with the shape of the dot.Comment: 4 pages, 4 figures, for submission as a regular articl
Phase diagram of magnetic domain walls in spin valve nano-stripes
We investigate numerically the transverse versus vortex phase diagram of
head-to-head domain walls in Co/Cu/Py spin valve nano-stripes (Py: Permalloy),
in which the Co layer is mostly single domain while the Py layer hosts the
domain wall. The range of stability of the transverse wall is shifted towards
larger thickness compared to single Py layers, due to a magnetostatic screening
effect between the two layers. An approached analytical scaling law is derived,
which reproduces faithfully the phase diagram.Comment: 4 page
Downscaling of fracture energy during brittle creep experiments
We present mode 1 brittle creep fracture experiments along fracture surfaces that contain strength heterogeneities. Our observations provide a link between smooth macroscopic time-dependent failure and intermittent microscopic stress-dependent processes. We find the large-scale response of slow-propagating subcritical cracks to be well described by an Arrhenius law that relates the fracture speed to the energy release rate. At the microscopic scale, high-resolution optical imaging of the transparent material used (PMMA) allows detailed description of the fracture front. This reveals a local competition between subcritical and critical propagation (pseudo stick-slip front advances) independently of loading rates. Moreover, we show that the local geometry of the crack front is self-affine and the local crack front velocity is power law distributed. We estimate the local fracture energy distribution by combining high-resolution measurements of the crack front geometry and an elastic line fracture model. We show that the average local fracture energy is significantly larger than the value derived from a macroscopic energy balance. This suggests that homogenization of the fracture energy is not straightforward and should be taken cautiously. Finally, we discuss the implications of our results in the context of fault mechanics
Revolving rivers in sandpiles: from continuous to intermittent flows
In a previous paper [Phys. Rev. Lett. 91, 014501 (2003)], the mechanism of
"revolving rivers" for sandpile formation is reported: as a steady stream of
dry sand is poured onto a horizontal surface, a pile forms which has a river of
sand on one side owing from the apex of the pile to the edge of the base. For
small piles the river is steady, or continuous. For larger piles, it becomes
intermittent. In this paper we establish experimentally the "dynamical phase
diagram" of the continuous and intermittent regimes, and give further details
of the piles topography, improving the previous kinematic model to describe it
and shedding further light on the mechanisms of river formation. Based on
experiments in Hele-Shaw cells, we also propose that a simple dimensionality
reduction argument can explain the transition between the continuous and
intermittent dynamics.Comment: 8 pages, 11 figures, submitted to Phys Rev
Interplay of seismic and aseismic deformations during earthquake swarms: An experimental approach
Observations of earthquake swarms and slow propagating ruptures on related faults suggest a close relation between the two phenomena. Earthquakes are the signature of fast unstable ruptures initiated on localized asperities while slow aseismic deformations are experienced on large stable segments of the fault plane. The spatial proximity and the temporal coincidence of both fault mechanical responses highlight the variability of fault rheology. However, the mechanism relating earthquakes and aseismic processes is still elusive due to the difficulty of imaging these phenomena of large spatiotemporal variability at depth. Here we present laboratory experiments that explore, in great detail, the deformation processes of heterogeneous interfaces in the brittle-creep regime. We track the evolution of an interfacial crack over 7 orders of magnitude in time and 5 orders of magnitude in space using optical and acoustic sensors. We explore the response of the system to slow transient loads and show that slow deformation episodes are systematically accompanied by acoustic emissions due to local fracture energy disorder. Features of acoustic emission activities and deformation rate distributions of our experimental system are similar to those in natural faults. On the basis of an activation energy model, we link our results to the Rate and State friction model and suggest an active role of local creep deformation in driving the seismic activity of earthquake swarms
- âŠ