10,546 research outputs found

    Thermodynamics of two lattice ice models in three dimensions

    Full text link
    In a recent paper we introduced two Potts-like models in three dimensions, which share the following properties: (A) One of the ice rules is always fulfilled (in particular also at infinite temperature). (B) Both ice rules hold for groundstate configurations. This allowed for an efficient calculation of the residual entropy of ice I (ordinary ice) by means of multicanonical simulations. Here we present the thermodynamics of these models. Despite their similarities with Potts models, no sign of a disorder-order phase transition is found.Comment: 5 pages, 7 figure

    Weak-Coupling Theory for Multiband Superconductivity Induced by Jahn-Teller Phonons

    Full text link
    Emergence of superconductivity in a two-band system coupled with breathing and Jahn-Teller phonons is discussed in a weak-coupling limit. With the use of a standard quantum mechanical procedure, the phonon-mediated attraction is derived. From the analysis of the model including such attraction, a BCS-like formula for a superconducting transition temperature TcT_{\rm c} is obtained. When only the breathing phonon is considered, TcT_{\rm c} is the same as that of the one-band model. On the other hand, when Jahn-Teller phonons are active, TcT_{\rm c} is significantly enhanced by the interband attraction even within the weak-coupling limit. Relevance of the present result to actual materials such as iron pnictides is briefly commented.Comment: 4 pages, 3 figures

    Magnetically driven ferroelectric order in Ni3_3V2_2O8_8

    Full text link
    We show that for Ni3_3V2_2O8_8 long-range ferroelectric and incommensurate magnetic order appear simultaneously in a single phase transition. The temperature and magnetic field dependence of the spontaneous polarization show a strong coupling between magnetic and ferroelectric orders. We determine the magnetic symmetry of this system by constraining the data to be consistent with Landau theory for continuous phase transitions. This phenomenological theory explains our observation the spontaneous polarization is restricted to lie along the crystal b axis and predicts that the magnitude should be proportional to a magnetic order parameter.Comment: 11 pages, 3 figure

    Competing Magnetic Phases on a "Kagome Staircase"

    Get PDF
    We present thermodynamic and neutron data on Ni_3V_2O_8, a spin-1 system on a kagome staircase. The extreme degeneracy of the kagome antiferromagnet is lifted to produce two incommensurate phases at finite T - one amplitude modulated, the other helical - plus a commensurate canted antiferromagnet for T ->0. The H-T phase diagram is described by a model of competing first and second neighbor interactions with smaller anisotropic terms. Ni_3V_2O_8 thus provides an elegant example of order from sub leading interactions in a highly frustrated systemComment: 4 pages, 3 figure

    Magnetocaloric effect in pyrochlore antiferromagnet Gd2Ti2O7

    Full text link
    An adiabatic demagnetization process is studied in Gd2Ti2O7, a geometrically frustrated antiferromagnet on a pyrochlore lattice. In contrast to conventional paramagnetic salts, this compound can exhibit a temperature decrease by a factor of ten in the temperature range below the Curie-Weiss constant. The most efficient cooling is observed in the field interval between 120 and 60 kOe corresponding to a crossover between saturated and spin-liquid phases. This phenomenon indicates that a considerable part of the magnetic entropy survives in the strongly correlated state. According to the theoretical model, this entropy is associated with a macroscopic number of local modes remaining gapless till the saturation field. Monte Carlo simulations on a classical spin model demonstrate good agreement with the experiment. The cooling power of the process is experimentally estimated with a view to possible technical applications. The results for Gd2Ti2O7 are compared to those for Gd3Ga5O12, a well-known material for low temperature magnetic refrigeration.Comment: 6 pages, 4 figures, accepted versio

    Near-Infrared Polarimetric Adaptive Optics Observations of NGC 1068: A torus created by a hydromagnetic outflow wind

    Full text link
    We present J' and K' imaging linear polarimetric adaptive optics observations of NGC 1068 using MMT-Pol on the 6.5-m MMT. These observations allow us to study the torus from a magnetohydrodynamical (MHD) framework. In a 0.5" (30 pc) aperture at K', we find that polarisation arising from the passage of radiation from the inner edge of the torus through magnetically aligned dust grains in the clumps is the dominant polarisation mechanism, with an intrinsic polarisation of 7.0%±\pm2.2%. This result yields a torus magnetic field strength in the range of 4-82 mG through paramagnetic alignment, and 13920+11^{+11}_{-20} mG through the Chandrasekhar-Fermi method. The measured position angle (P.A.) of polarisation at K' is found to be similar to the P.A. of the obscuring dusty component at few parsec scales using infrared interferometric techniques. We show that the constant component of the magnetic field is responsible for the alignment of the dust grains, and aligned with the torus axis onto the plane of the sky. Adopting this magnetic field configuration and the physical conditions of the clumps in the MHD outflow wind model, we estimate a mass outflow rate \le0.17 M_{\odot} yr1^{-1} at 0.4 pc from the central engine for those clumps showing near-infrared dichroism. The models used were able to create the torus in a timescale of \geq105^{5} yr with a rotational velocity of \leq1228 km s1^{-1} at 0.4 pc. We conclude that the evolution, morphology and kinematics of the torus in NGC 1068 can be explained within a MHD framework.Comment: 14 pages, 4 figures, Accepted by MNRA

    Pinwheel VBS state and triplet excitations in the two-dimensional deformed kagome lattice

    Full text link
    Determining ground states of correlated electron systems is fundamental to understanding novel phenomena in condensed matter physics. A difficulty, however, arises in a geometrically frustrated system in which the incompatibility between the global topology of an underlying lattice and local spin interactions gives rise to macroscopically degenerate ground states, potentially prompting the emergence of quantum spin states, such as resonating valence bond (RVB) and valence bond solid (VBS). Although theoretically proposed to exist in a kagome lattice -- one of the most highly frustrated lattices in two dimensions (2D) being comprised of corner-sharing triangles -- such quantum-fluctuation-induced states have not been observed experimentally. Here we report the first realization of the "pinwheel" VBS ground state in the S=1/2 deformed kagome lattice antiferromagnet Rb2Cu3SnF12. In this system, a lattice distortion breaks the translational symmetry of the ideal kagome lattice and stabilizes the VBS state.Comment: 10 pages, 4 figures and Supplemental Informatio

    29-Si NMR and Hidden Order in URu2Si2

    Full text link
    We present new 29-Si NMR spectra in URu2Si2 for varying temperature T, and external field H. On lowering T, the systematics of the low-field lineshape and width reveal an extra component (lambda) to the linewidth below T_N ~ 17 K not observed previously. We find that lambda is magnetic-field independent and dominates the low-field lineshape for all orientations of H with respect to the tetragonal c axis. The behavior of lambda indicates a direct relationship between the 29-Si spin and the transition at T_N, but it is inconsistent with a coupling of the nuclei to static antiferromagnetic order/disorder of the U-spin magnetization. This leads us to conjecture that lambda is due to a coupling of 29-Si to the system's hidden-order parameter. A possible coupling mechanism involving charge degrees of freedom and indirect nuclear spin/spin interactions is proposed. We also propose further experiments to test for the existence of this coupling mechanism.Comment: 4 pages, 4 figures, submitted to PR
    corecore