468 research outputs found

    Dyson processes on the octonion algebra

    Full text link
    We consider Brownian motion on symmetric matrices of octonions, and study the law of the spectrum. Due to the fact that the octonion algebra is nonassociative, the dimension of the matrices plays a special role. We provide two specific models on octonions, which give some indication of the relation between the multiplicity of eigenvalues and the exponent in the law of the spectrum

    The Influence of Climate on Flourishing and Motivational Outcomes for U.S. Masters Swimmers

    Get PDF
    The climate in which older adults exercise and participate in sport may play a role in promoting a lifetime commitment to exercising. However, little research has examined the relationship of caring (C) and task-involving (TI) climates, motivation, and well-being with respect to older adult athletes. The purpose of this study was to examine the relationship between Masters swimmers’ perceptions of the climate, effort, enjoyment, and flourishing as well as explore the mediating effects of effort and enjoyment on the relationship between climate and flourishing. U.S. Masters swimmers (n = 294; Mage = 63.57 years; 84.40% White) with 1–80 years of swimming experience (M = 34.54 years) participating in coach-led programs completed an online survey. The results of latent variable, multiple-mediator analyses via structural equation modeling revealed two important contributions to the literature: (1) when Masters swimmers perceived that they were in C and TI climates, they were more likely to report higher levels of effort and greater enjoyment and flourishing; (2) the Masters swimmers’ effort levels directly influenced their flourishing, mediating the relationship between climates and flourishing. This research has important implications for practice and policy, as U.S. Masters Swimming appears to be a fruitful avenue for promoting an enjoyable physical activity that can be experienced throughout a lifetime

    Josephson Effect between Condensates with Different Internal Structures

    Full text link
    A general formula for Josephson current in a wide class of hybrid junctions between different internal structures is derived on the basis of the Andreev picture. The formula extends existing formulae and also enables us to analyze novel B-phase/A-phase/B-phase (BAB) junctions in superfluid helium three systems, which are accessible to experiments. It is predicted that BAB junctions will exhibit two types of current-phase relations associated with different internal symmetries. A ``pseudo-magnetic interface effect'' inherent in the system is also revealed.Comment: 4 pages, 2 figure

    The Usefulness of Readout-Segmented Echo-Planar Imaging (RESOLVE) for Bio-phantom Imaging Using 3-Tesla Clinical MRI

    Get PDF
    Readout-segmented echo-planar imaging (RESOLVE) is a multi-shot echo-planar imaging (EPI) modality with k-space segmented in the readout direction. We investigated whether RESOLVE decreases the distortion and artifact in the phase direction and increases the signal-to-noise ratio (SNR) in phantoms image taken with 3-tesla (3T) MRI versus conventional EPI. We used a physiological saline phantom and subtraction mapping and observed that RESOLVE’s SNR was higher than EPI’s. Using RESOLVE, the combination of a special-purpose coil and a large-loop coil had a higher SNR compared to using only a head/neck coil. RESOLVE’s image distortioas less than EPI’s. We used a 120 mM polyethylene glycol phantom to examine the phase direction artifact.vThe range where the artifact appeared in the apparent diffusion coefficient (ADC) image was shorter with RESOLVE compared to EPI. We used RESOLVE to take images of a Jurkat cell bio-phantom: the cell-region ADC was 856×10−6mm2/sec and the surrounding physiological saline-region ADC was 2,951×10−6mm2/sec. The combination of RESOLVE and the 3T clinical MRI device reduced image distortion and improved SNR and the identification of accurate ADC values due to the phase direction artifact reduction. This combination is useful for obtaining accurate ADC values of bio-phantoms

    Unusual magnetic relaxation behavior in La0.5Ca0.5MnO3 and Nd0.5Sr0.5MnO3

    Full text link
    We have carried out a systematic magnetic relaxation study, measured after applying and switching off a 5 T magnetic field to polycrystalline samples of La0.5Ca0.5MnO3 and Nd0.5Sr0.5MnO3. The long time logarithmic relaxation rate (LTLRR), decreased from 10 K to 150 K and increased from 150 K to 195 K in La0.5Ca0.5MnO3. This change in behavior was found to be related to the complete suppression of the antiferromagnetic phase above 150 K and in the presence of a 5 T magnetic field. At 195 K, the magnetization first decreased, and after a few minutes increased slowly as a function of time. Moreover, between 200 K and 245 K, the magnetization increased throughout the measured time span. The change in the slope of the curves, from negative to positive at about 200 K was found to be related to the suppression of antiferromagnetic fluctuations in small magnetic fields. A similar temperature dependence of the LTLRR was found for the Nd0.5Sr0.5MnO3 sample. However, the temperature where the LTLRR reached the minimum in Nd0.5Sr0.5MnO3 was lower than that of La0.5Ca0.5MnO3. This result agrees with the stronger ferromagnetic interactions that exist in Nd0.5Sr0.5MnO3 in comparison to La0.5Ca0.5MnO3. The above measurements suggested that the general temperature dependence of the LTLRR and the underlying physics were mainly independent of the particular charge ordering system considered. All relaxation curves could be fitted using a logarithmic law at long times. This slow relaxation was attributed to the coexistence of ferromagnetic and antiferromagnetic interactions between Mn ions, which produced a distribution of energy barriers.Comment: Accepted to PRB as a regular article, 10 figures, Scheduled Issue: 01 June 200

    Development of a novel method for visualizing restricted diffusion using subtraction of apparent diffusion coefficient values

    Get PDF
    In order to visualize restricted diffusion, the present study developed a novel method called 'apparent diffusion coefficient (ADC) subtraction method (ASM)' and compared it with diffusion kurtosis imaging (DKI). The diffusion-weighted images of physiological saline, in addtion to bio-phatoms of low cell density and the highest cell density were obtained using two sequences with different effective diffusion times. Then, the calculated ADC values were subtracted. The mean values and standard deviations (SD) of the ADC values of physiological saline, low cell density and the highest cell density phantoms were 2.95 +/- 0.08x10(-3), 1.90 +/- 0.35x10(-3) and 0.79 +/- 0.05x10(-3) mm(2)/sec, respectively. The mean kurtosis values and SD of DKI were 0.04 +/- 0.01, 0.44 +/- 0.13 and 1.27 +/- 0.03, respectively. The ASM and SD values were 0.25 +/- 0.20x10(4), 0.51 +/- 0.41x10(4) and 4.80 +/- 4.51x10(4) (sec/mm(2))(2), respectively. Using bio-phantoms, the present study demonstrated that DKI exhibits restricted diffusion in the extracellular space. Similarly, ASM may reflect the extent of restricted diffusion in the extracellular space
    • 

    corecore