13 research outputs found

    Conservation of Complex Nuclear Localization Signals Utilizing Classical and Non-Classical Nuclear Import Pathways in LANA Homologs of KSHV and RFHV

    Get PDF
    ORF73 latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) is targeted to the nucleus of infected cells where it binds to chromatin and mediates viral episome persistence, interacts with cellular proteins and plays a role in latency and tumorigenesis. A structurally related LANA homolog has been identified in the retroperitoneal fibromatosis herpesvirus (RFHV), the macaque homolog of KSHV. Here, we report the evolutionary and functional conservation of a novel bi-functional nuclear localization signal (NLS) in KSHV and RFHV LANA. N-terminal peptides from both proteins were fused to EGFP or double EGFP fusions to examine their ability to induce nuclear transport of a heterologous protein. In addition, GST-pull down experiments were used to analyze the ability of LANA peptides to interact with members of the karyopherin family of nuclear transport receptors. Our studies revealed that both LANA proteins contain an N-terminal arginine/glycine (RG)-rich domain spanning a conserved chromatin-binding motif, which binds directly to importin β1 in a RanGTP-sensitive manner and serves as an NLS in the importin β1-mediated non-classical nuclear import pathway. Embedded within this domain is a conserved lysine/arginine-(KR)-rich bipartite motif that binds directly to multiple members of the importin α family of nuclear import adaptors in a RanGTP-insensitive manner and serves as an NLS in the classical importin α/β-mediated nuclear import pathway. The positioning of a classical bipartite kr-NLS embedded within a non-classical rg-NLS is a unique arrangement in these viral proteins, whose nuclear localization is critical to their functionality and to the virus life cycle. The ability to interact with multiple import receptors provides alternate pathways for nuclear localization of LANA. Since different import receptors can import cargo to distinct subnuclear compartments, a multifunctional NLS may provide LANA with an increased ability to interact with different nuclear components in its multifunctional role to maintain viral latency

    Understanding Novel Superconductors with Ab Initio Calculations

    Full text link
    This chapter gives an overview of the progress in the field of computational superconductivity. Following the MgB2 discovery (2001), there has been an impressive acceleration in the development of methods based on Density Functional Theory to compute the critical temperature and other physical properties of actual superconductors from first-principles. State-of-the-art ab-initio methods have reached predictive accuracy for conventional (phonon-mediated) superconductors, and substantial progress is being made also for unconventional superconductors. The aim of this chapter is to give an overview of the existing computational methods for superconductivity, and present selected examples of material discoveries that exemplify the main advancements.Comment: 38 pages, 10 figures, Contribution to Springer Handbook of Materials Modellin

    DEDD, a novel death effector domain-containing protein, targeted to the nucleolus.

    No full text
    The CD95 signaling pathway comprises proteins that contain one or two death effector domains (DED), such as FADD/Mort1 or caspase-8. Here we describe a novel 37 kDa protein, DEDD, that contains an N-terminal DED. DEDD is highly conserved between human and mouse (98. 7% identity) and is ubiquitously expressed. Overexpression of DEDD in 293T cells induced weak apoptosis, mainly through its DED by which it interacts with FADD and caspase-8. Endogenous DEDD was found in the cytoplasm and translocated into the nucleus upon stimulation of CD95. Immunocytological studies revealed that overexpressed DEDD directly translocated into the nucleus, where it co-localizes in the nucleolus with UBF, a basal factor required for RNA polymerase I transcription. Consistent with its nuclear localization, DEDD contains two nuclear localization signals and the C-terminal part shares sequence homology with histones. Recombinant DEDD binds to both DNA and reconstituted mononucleosomes and inhibits transcription in a reconstituted in vitro system. The results suggest that DEDD is a final target of a chain of events by which the CD95-induced apoptotic signal is transferred into the nucleolus to shut off cellular biosynthetic activities

    Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: A potential link between genome surveillance and apoptosis

    No full text
    Fas-associated death domain protein (FADD) is an adaptor protein bridging death receptors with initiator caspases. Thus, its function and localization are assumed to be cytoplasmic, although the localization of endogenous FADD has not been reported. Surprisingly, the data presented here demonstrate that FADD is mainly nuclear in several adherent cell lines. Its accumulation in the nucleus and export to the cytoplasm required the phosphorylation site Ser-194, which was also required for its interaction with the nucleocytoplasmic shuttling protein exportin-5. Within the nucleus, FADD interacted with the methyl-CpG binding domain protein 4 (MBD4), which excises thymine from GT mismatches in methylated regions of chromatin. The MBD4-interacting mismatch repair factor MLH1 was also found in a complex with FADD. The FADD–MBD4 interaction involved the death effector domain of FADD and a region of MBD4 adjacent to the glycosylase domain. The FADD-binding region of MBD4 was downstream of a frameshift mutation that occurs in a significant fraction of human colorectal carcinomas. Consistent with the idea that MBD4 can signal to an apoptotic effector, MBD4 regulated DNA damage-, Fas ligand-, and cell detachment-induced apoptosis. The nuclear localization of FADD and its interaction with a genome surveillance/DNA repair protein that can regulate apoptosis suggests a novel function of FADD distinct from direct participation in death receptor signaling complexes

    Clinical Use of Toxic Proteins and Peptides from Tian Hua Fen and Scorpion Venom

    No full text
    corecore