12,411 research outputs found
Phase 0 study for a geothermal superheated water proof of concept facility
A Phase 0 study for the selection of a representative liquid-dominated geothermal resource of moderate salinity and temperature is discussed. Selection and conceptual design of a nominal 10-MWe energy conversion system, and implementation planning for Phase 1: subsystem (component, experiments) and Phase 2: final design, construction, and operation of experimental research facilities are reported. The objective of the overall program is to demonstrate the technical and economic viability of utilizing moderate temperature and salinity liquid-dominated resources with acceptable environmental impact, and thus encourage commercial scale development of geothermal electrical power generation
Measuring micro-organism gas production
Transducer, which senses pressure buildup, is easy to assemble and use, and rate of gas produced can be measured automatically and accurately. Method can be used in research, in clinical laboratories, and for environmental pollution studies because of its ability to detect and quantify rapidly the number of gas-producing microorganisms in water, beverages, and clinical samples
Results from the National Aeronautics and Space Administration remote sensing experiments in the New York Bight, 7-17 April 1975
A cooperative operation was conducted in the New York Bight to evaluate the role of remote sensing technology to monitor ocean dumping. Six NASA remote sensing experiments were flown on the C-54, U-2, and C-130 NASA aircraft, while NOAA obtained concurrent sea truth information using helicopters and surface platforms. The experiments included: (1) a Radiometer/Scatterometer (RADSCAT), (2) an Ocean Color Scanner (OCS), (3) a Multichannel Ocean Color Sensor (MOCS), (4) four Hasselblad cameras, (5) an Ebert spectrometer; and (6) a Reconafax IV infrared scanner and a Precision Radiation Thermometer (PRT-5). The results of these experiments relative to the use of remote sensors to detect, quantify, and determine the dispersion of pollutants dumped into the New York Bight are presented
Suppression of spin-pumping by a MgO tunnel-barrier
Spin-pumping generates pure spin currents in normal metals at the ferromagnet
(F)/normal metal (N) interface. The efficiency of spin-pumping is given by the
spin mixing conductance, which depends on N and the F/N interface. We directly
study the spin-pumping through an MgO tunnel-barrier using the inverse spin
Hall effect, which couples spin and charge currents and provides a direct
electrical detection of spin currents in the normal metal. We find that
spin-pumping is suppressed by the tunnel-barrier, which is contrary to recent
studies that suggest that the spin mixing conductance can be enhanced by a
tunnel-barrier inserted at the interface
Approaches to Restoration: Assessing the Roles of Structure and Function in Saltmarsh Restoration in Light of Climate Change
The aim of this thesis is to review the current goals and methods for salt marsh restoration, to question how those goals and methods may change in light of global change, and to present a case study that offers a look at the kinds of information that can be gleaned by studying both structure and functionality in restoration
WIND-TUNNEL INVESTIGATION AT MACH NUMBERS FROM 0.40 TO 1.20 OF THE STATIC AERODYNAMIC AND CONTROL CHARACTERISTICS OF A MODEL OF A NONLIFTING REENTRY CAPSULE IN COMBINATION WITH A ROCKET BOOSTER
Wind tunnel investigation at subsonic & transonic speed of static aerodynamic and control characteristics of capsule-booster mode
Wind-Tunnel Investigation at Mach Numbers from 0.40 to 1.14 of the Static Aerodynamic Characteristics of a Nonlifting Vehicle Suitable for Reentry
An investigation was conducted in the Langley 8-foot transonic pressure tunnel to investigate the static pitching-moment, normal-force, and axial-force characteristics on a model of a nonlifting vehicle suit- able for reentry. The vehicle was designed to use a heat sink and blunt shape to alleviate the effects of the heating encountered during reentry of the earth's atmosphere. The effects of modifying the intersection of the face of the model with the afterbody from a sharp corner to a rounded edge were also investigated. Tests were conducted at Mach numbers from 0.40 to 1.14 and at angles of attack from approximately -3 deg to 20 deg. The Reynolds number varied from about 2.0 x 10(exp 6) to 3.6 x 10(exp 6). The results show that the model had a low positive static-stability level, low normal-force coefficients, and large axial-force coefficients. The model trimmed, for the angle-of-attack range investigated, at angles of attack near zero. The effects on the stability as a result of rounding the corner were negligible
- …