3,621 research outputs found

    Completely dark galaxies: their existence, properties, and strategies for finding them

    Get PDF
    There are a number of theoretical and observational hints that large numbers of low-mass galaxies composed entirely of dark matter exist in the field. The theoretical considerations follow from the prediction of cold dark matter theory that there exist many low-mass galaxies for every massive one. The observational considerations follow from the observed paucity of these low-mass galaxies in the field but not in dense clusters of galaxies; this suggests that the lack of small galaxies in the field is due to the inhibition of star formation in the galaxies as opposed to the fact that their small dark matter halos do not exist. In this work we outline the likely properties of low-mass dark galaxies, and describe observational strategies for finding them, and where in the sky to search. The results are presented as a function of the global properties of dark matter, in particular the presence or absence of a substantial baryonic dark matter component. If the dark matter is purely cold and has a Navarro, Frenk and White density profile, directly detecting dark galaxies will only be feasible with present technology if the galaxy has a maximum velocity dispersion in excess of 70 km/s, in which case the dark galaxies could strongly lens background objects. This is much higher than the maximum velocity dispersions in most dwarf galaxies. If the dark matter in galaxy halos has a baryonic component close to the cosmic ratio, the possibility of directly detecting dark galaxies is much more realistic; the optimal method of detection will depend on the nature of the dark matter. A number of more indirect methods are also discussed.Comment: 12 pages, 4 figures, MNRAS in pres

    Energy expenditure while back-packing with carriers of different design

    Get PDF

    A study of CTD cables and lowering systems

    Get PDF
    This study first reviews both the electrical and mechanical modes and causes of failure of electromechanical (E/M) cables used to lower deep sea sensors, such as CTD instruments, from oceanographic ships. It then outlines measures or steps that could be taken to correct some of the deficiencies observed and improve the systems presently used. These measures include quality control, tests, operational limits, improved handling and maintenance, improved machinery. The study then surveys alternative cables for lowering the sensors and convey the information from the sensors back to the ship. These alternatives include strength members other than steel (Kevlar)and signal carriers other than conventional copper conductors (fiber optics). The final section - Conclusions - summarizes the recommendations, based on this study, for improving the reliability of present and future CTD lowering systems.Prepared for the Office of Naval Research under Contract N00014-7l6-C-0197; NR 083-400

    Seasonal variability and coastal upwelling near Cape Santa Marta (Brazil)

    Get PDF
    The Santa Marta Grande Cape (CSM) area, a relatively steep and narrow continental shelf off southeast Brazil, is under the influence of the Brazil Current and intense seasonal variations of the wind field that affect the composition of water masses and their circulation. Hydrographic data, satellite-derived wind stress, and numerical simulations are used to characterize the seasonal and shorter period variability of the oceanographic conditions off CSM, in the area between 27S and 30S. The study is focused on the upwelling episodes and the dynamical mechanisms associated with these events. Field data and numerical results indicate significant seasonal changes in the oceanographic structure, the water mass composition, and the dynamical balance. During fall and winter, when southwesterly winds prevail and the frequency of meteorological frontal systems increases, the region is characterized by waters of continental origin, the Plata Plume Water (PPW). During spring and summer, deeper waters reach the surface layer due to the action of northeasterly winds. Coastal upwelling events are revealed by surface temperature minima observed south of CSM. Synoptic data show that these events occur in pulses associated with changes in the wind direction. Analysis of the numerical results shows that this particular location of the upwelling band results from the synergy between shelf-break upwelling and the regional shelf circulation induced by the northeasterly winds, both of which are modulated by changes in the coastline orientation and shelf width.Fil: Campos, Paula C.. Universidade Federal do Rio Grande do Sul; BrasilFil: Moller Jr., Osmar O.. Universidade Federal do Rio Grande do Sul; BrasilFil: Piola, Alberto Ricardo. Universidad de Buenos Aires; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografia Naval; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a (i); Argentina. Universidad Nacional del Sur; Argentin

    Finding active galactic nuclei through Fink

    Full text link
    We present the Active Galactic Nuclei (AGN) classifier as currently implemented within the Fink broker. Features were built upon summary statistics of available photometric points, as well as color estimation enabled by symbolic regression. The learning stage includes an active learning loop, used to build an optimized training sample from labels reported in astronomical catalogs. Using this method to classify real alerts from the Zwicky Transient Facility (ZTF), we achieved 98.0% accuracy, 93.8% precision and 88.5% recall. We also describe the modifications necessary to enable processing data from the upcoming Vera C. Rubin Observatory Large Survey of Space and Time (LSST), and apply them to the training sample of the Extended LSST Astronomical Time-series Classification Challenge (ELAsTiCC). Results show that our designed feature space enables high performances of traditional machine learning algorithms in this binary classification task.Comment: Accepted for the Machine learning and the Physical Sciences workshop of NeurIPS 202

    Towards a Notion of Distributed Time for Petri Nets

    No full text
    We set the ground for research on a timed extension of Petri nets where time parameters are associated with tokens and arcs carry constraints that qualify the age of tokens required for enabling. The novelty is that, rather than a single global clock, we use a set of unrelated clocks --- possibly one per place --- allowing a local timing as well as distributed time synchronisation. We give a formal definition of the model and investigate properties of local versus global timing, including decidability issues and notions of processes of the respective models

    Statistics of Magnification Perturbations by Substructure in the Cold Dark Matter Cosmological Model

    Full text link
    We study the statistical properties of magnification perturbations by substructures in strong lensed systems using linear perturbation theory and an analytical substructure model including tidal truncation and a continuous substructure mass spectrum. We demonstrate that magnification perturbations are dominated by perturbers found within a tidal radius of an image, and that sizable magnification perturbations may arise from small, coherent contributions from several substructures within the lens halo. We find that the root-mean-square (rms) fluctuation of the magnification perturbation is 10% to 20% and both the average and rms perturbations are sensitive to the mass spectrum and density profile of the perturbers. Interestingly, we find that relative to a smooth model of the same mass, the average magnification in clumpy models is lower (higher) than that in smooth models for positive (negative) parity images. This is opposite from what is observed if one assumes that the image magnification predicted by the best-fit smooth model of a lens is a good proxy for what the observed magnification would have been if substructures were absent. While it is possible for this discrepancy to be resolved via nonlinear perturbers, we argue that a more likely explanation is that the assumption that the best-fit lens model is a good proxy for the magnification in the absence of substructure is not correct. We conclude that a better theoretical understanding of the predicted statistical properties of magnification perturbations by CDM substructure is needed in order to affirm that CDM substructures have been unambiguously detected.Comment: ApJ accepted, minor change

    Effects of Ellipticity and Shear on Gravitational Lens Statistics

    Full text link
    We study the effects of ellipticity in lens galaxies and external tidal shear from neighboring objects on the statistics of strong gravitational lenses. For isothermal lens galaxies normalized so that the Einstein radius is independent of ellipticity and shear, ellipticity {\it reduces} the lensing cross section slightly, and shear leaves it unchanged. Ellipticity and shear can significantly enhance the magnification bias, but only if the luminosity function of background sources is steep. Realistic distributions of ellipticity and shear {\it lower} the total optical depth by a few percent for most source luminosity functions, and increase the optical depth only for steep luminosity functions. The boost in the optical depth is noticeable (>5%) only for surveys limited to the brightest quasars (L/L_* > 10). Ellipticity and shear broaden the distribution of lens image separations but do not affect the mean. Ellipticity and shear naturally increase the abundance of quadruple lenses relative to double lenses, especially for steep source luminosity functions, but the effect is not enough (by itself) to explain the observed quadruple-to-double ratio. With such small changes to the optical depth and image separation distribution, ellipticity and shear have a small effect on cosmological constraints from lens statistics: neglecting the two leads to biases of just Delta Omega_M = 0.00 \pm 0.01 and Delta Omega_Lambda = -0.02 \pm 0.01 (where the errorbars represent statistical uncertainties in our calculations).Comment: Optical depth normalization discussed. Matches the published versio

    Simulation of gauge transformations on systems of ultracold atoms

    Full text link
    We show that gauge transformations can be simulated on systems of ultracold atoms. We discuss observables that are invariant under these gauge transformations and compute them using a tensor network ansatz that escapes the phase problem. We determine that the Mott-insulator-to-superfluid critical point is monotonically shifted as the induced magnetic flux increases. This result is stable against the inclusion of a small amount of entanglement in the variational ansatz.Comment: 14 pages, 6 figure
    • 

    corecore