1,496 research outputs found

    Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy

    Get PDF
    Propagation of terahertz waves in hollow metallic waveguides depends on the waveguide mode. Near-field scanning probe terahertz microscopy is applied to identify the mode structure and composition in dielectric-lined hollow metallic waveguides. Spatial profiles, relative amplitudes, and group velocities of three main waveguide modes are experimentally measured and matched to the HE11, HE12, and TE11 modes. The combination of near-field microscopy with terahertz time-resolved spectroscopy opens the possibility of waveguide mode characterization in the terahertz band

    Efficiency Enhancement of Scattering Near-Field Probes

    Get PDF
    We measure, for the first time, the scattering efficiency of resonant terahertz (THz) probes for scattering-type THz near-field microscopy. We fabricate the probes by placing an indium 'antenna' directly on the tine of a quartz tuning fork (QTF), which we use as an atomic force microscope (AFM) probe in tapping mode. THz time-domain spectroscopy (TDS) of the THz field scattered from the probe shows that the scattering efficiency of the indium antenna exhibits resonant enhancement determined by the antenna length. These resonant scattering probes can enable THz near-field imaging applications where THz contrast is weak, such as 2D materials or biological systems

    Near-field terahertz imaging using sub-wavelength apertures without cutoff

    Get PDF
    We demonstrate near-field imaging capabilities of a conical waveguide without cutoff using broadband terahertz (THz) radiation. In contrast to conventional conically tapered waveguides, which are characterized by strong suppression of transmission below the cutoff frequency, the proposed structure consists of two pieces, such that there is an adjustable gap along the length of the waveguide. We also ensure that the sidewalls are thin in the vicinity of the gap. The combination of these geometrical features allow for significantly enhanced transmission at frequencies below the cutoff frequency, without compromising the mode confinement and, consequently, the spatial resolution when used for imaging applications. We demonstrate near-field imaging with this probe simultaneously at several frequencies, corresponding to three regimes: above, near and below the cutoff frequency. We observe only mild degradation in the image quality as the frequency is reduced below the cutoff frequency. These results suggest that further refinements in the probe structure will allow for improved imaging capabilities at frequencies well below the cutoff frequency

    Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5-5 THz band.

    Get PDF
    A low-loss and low-dispersive optical-fiber-like hybrid HE11 mode is developed within a wide band in metallic hollow waveguides if their inner walls are coated with a thin dielectric layer. We investigate terahertz (THz) transmission losses from 0.5 to 5.5 THz and bending losses at 2.85 THz in a polystyrene-lined silver waveguides with core diameters small enough (1 mm) to minimize the number of undesired modes and to make the waveguide flexible, while keeping the transmission loss of the HE11 mode low. The experimentally measured loss is below 10 dB/m for 2 < ? < 2.85 THz (∼4-4.5 dB/m at 2.85 THz) and it is estimated to be below 3 dB/m for 3 < ? < 5 THz according to the numerical calculations. At ∼1.25 THz, the waveguide shows an absorption peak of ∼75 dB/m related to the transition between the TM11-like mode and the HE11 mode. Numerical modeling reproduces the measured absorption spectrum but underestimates the losses at the absorption peak, suggesting imperfections in the waveguide walls and that the losses can be reduced further. © 2013 Optical Society of America

    THz near-filed microscopy technique and applications with sub-wavelength aperture probes

    Get PDF

    Terahertz nano-spectroscopy with resonant scattering probes

    Get PDF
    We propose and demonstrate tunable resonant scattering probes for terahertz (THz) near-field microscopy, using sharp indium tips fabricated to the tine of a quartz tuning fork. We find the antenna resonance of the indium tips can be tuned by altering the tip length, which we support with numerical models. We also demonstrate the indium tips can provide nanoscale field confinement at the tip apex, with spatial resolution better than 100 nm

    Terahertz near-field microscopy: Science, Technology, and Insights

    Get PDF

    Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides

    Get PDF
    Coaxial waveguides exhibit no dispersion and therefore can serve as an ideal channel for transmission of broadband THz pulses. Implementation of THz coaxial waveguide systems however requires THz beams with radially-polarized distribution. We demonstrate the launching of THz pulses into coaxial waveguides using the effect of THz pulse generation at semiconductor surfaces. We find that the radial transient photo-currents produced upon optical excitation of the surface at normal incidence radiate a THz pulse with the field distribution matching the mode of the coaxial waveguide. In this simple scheme, the optical excitation beam diameter controls the spatial profile of the generated radially-polarized THz pulse and allows us to achieve efficient coupling into the TEM waveguide mode in a hollow coaxial THz waveguide. The TEM quasi-single mode THz waveguide excitation and non-dispersive propagation of a short THz pulse is verified experimentally by time-resolved near-field mapping of the THz field at the waveguide output

    Phase-sensitive terahertz imaging using room-temperature near-field nanodetectors

    Get PDF
    Imaging applications in the terahertz (THz) frequency range are severely restricted by diffraction. Near-field scanning probe microscopy is commonly employed to enable mapping of the THz electromagnetic fields with sub-wavelength spatial resolution, allowing intriguing scientific phenomena to be explored, such as charge carrier dynamics in nanostructures and THz plasmon-polaritons in novel 2D materials and devices. High-resolution THz imaging, so far, has relied predominantly on THz detection techniques that require either an ultrafast laser or a cryogenically cooled THz detector. Here, we demonstrate coherent near-field imaging in the THz frequency range using a room-temperature nanodetector embedded in the aperture of a near-field probe, and an interferometric optical setup driven by a THz quantum cascade laser. By performing phase-sensitive imaging of strongly confined THz fields created by plasmonic focusing, we demonstrate the potential of our novel architecture for high-sensitivity coherent THz imaging with sub-wavelength spatial resolution. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen
    • …
    corecore